14 research outputs found

    Electrodeposition of Ni-Si Schottky barriers

    No full text
    Electrodeposition is being used to fabricate magnetic microstructures directly on patterned n-type Si wafers of various substrate resistivities. The Ni-Si Schottky barrier is characterized and found to be of high quality for relatively low Si resistivities (1-2 Omega(.)cm), with extremely low reverse leakage. It is shown that a direct correlation exists among the electrodeposition potential, the roughness, and the coercivity of the films. A conductive seed layer or a back contact is not compulsory for electrodeposition on Si with resistivities up to 15 Omega(.)cm. This shows that electrodeposition of magnetic materials on Si might be a viable fabrication technique for magnetoresistance and spintronics applications

    Rolling Rod Electrostatic Microgenerator

    Full text link

    Shape-induced anisotropy in antidot arrays from self-assembled templates

    No full text
    Using self-assembly of polystyrene spheres, well-ordered templates have been prepared on glass and silicon substrates. Strong guiding of self-assembly is obtained on photolithographically structured silicon substrates. Magnetic antidot arrays with three-dimensional architecture have been prepared by electrodeposition in the pores of these templates. The shape anisotropy demonstrates a crucial impact on magnetization reversal processes

    Electrodeposition of Ni-Si Schottky barriers

    Full text link

    Electrodeposition of Ni-Si Schottky barriers

    Full text link
    Electrodeposition is being used to fabricate magnetic microstructures directly on patterned n-type Si wafers of various substrate resistivities. The Ni-Si Schottky barrier is characterized and found to be of high quality for relatively low Si resistivities (1-2 Omega(.)cm), with extremely low reverse leakage. It is shown that a direct correlation exists among the electrodeposition potential, the roughness, and the coercivity of the films. A conductive seed layer or a back contact is not compulsory for electrodeposition on Si with resistivities up to 15 Omega(.)cm. This shows that electrodeposition of magnetic materials on Si might be a viable fabrication technique for magnetoresistance and spintronics applications

    Long range ordering in self-assembled Ni arrays on patterned Si

    No full text
    We have succeeded in aligning self-assembled structures by using a lithographically defined stripe. The 140 nm wide by 100 nm high SiO2 strip is shown to guide the assebmly of 500 nm latex spheres so that spheres are aligned along the strip and are in registration on either side of the strip. This method can be used to increase long-range ordering in magnetic storage systems without compromising the density. Inverse sphere Ni arrays were made by electodeposition through the latex template. We also show that the hexagonal symmetry of the resulting inverse sphere Ni arrays can be simulated using the approach presented below

    Catalyst free low temperature direct growth of carbon nanotubes on SiGe islands and Ge quantum dots

    No full text
    A metal catalyst free growth method of carbon nanotubes (CNTs) has been developed using chemical vapor deposition (CVD) of CNTs on carbon implanted SiGe islands on Si substrates. From SEM and Raman measurements, the fabricated CNTs are identified as single walled CNTs (SWNTs) with diameter ranging from 1.2 to 1.6 nm. Thick and curly oxide nanofibers were also obtained as a by-product of the growth process but could be dissolved using HF treatment. Essential parts of the substrate preparation after CVD SiGe growth and carbon implant are a chemical oxidization by hydrogen peroxide solution and a heat treatment at 1000 °C prior to CNT growth. We believe that these processes enhance surface decomposition and assist the formation of carbon clusters, which play a role in seeding CNT growth. Though further investigation is required to improve the density of the SWNTs, the growth technique would be a practical technique for growing metal-free CNTs for a variety of applications, while at the same time opening up the prospect of merging CNT devices into silicon VLSI technology. We will also present results that demonstrate the application of this CNT growth technique to germanium quantum dot substrates

    Metal catalyst-free low-temperature carbon nanotube growth on SiGe islands

    No full text
    A metal-catalyst-free growth method of carbon nanotubes (CNTs) has been developed using chemical vapor deposition of CNTs on carbon-implanted SiGe islands on Si substrates. From scanning electron microscopy and Raman measurements, the fabricated CNTs are identified as single-walled CNTs with a diameter ranging from 1.2 to 1.6 nm. Essential parts of the substrate preparation after CVD SiGe growth and carbon implant are a chemical oxidization by hydrogen peroxide solution and a heat treatment at 1000°C prior to CNT growth. We believe that these processes enhance surface decomposition and assist the formation of carbon clusters, which play a role in seeding CNT growth. The growth technique is a practical method of growing metal-free CNTs for a variety of applications, while at the same time opening up the prospect of merging CNT devices into silicon very-large-scale-integration technology
    corecore