13 research outputs found

    The energy spectrum of cosmic rays beyond the turn-down around 10^17 eV as measured with the surface detector of the Pierre Auger Observatory

    Get PDF
    We present a measurement of the cosmic-ray spectrum above 100 PeV using the part of the surface detector of the Pierre Auger Observatory that has a spacing of 750 m. An inflection of the spectrum is observed, confirming the presence of the so-called second-knee feature. The spectrum is then combined with that of the 1500 m array to produce a single measurement of the flux, linking this spectral feature with the three additional breaks at the highest energies. The combined spectrum, with an energy scale set calorimetrically via fluorescence telescopes and using a single detector type, results in the most statistically and systematically precise measurement of spectral breaks yet obtained. These measurements are critical for furthering our understanding of the highest energy cosmic rays

    Search for photons above 1019^{19} eV with the surface detector of the Pierre Auger Observatory

    No full text
    We use the surface detector of the Pierre Auger Observatory to search for air showers initiated by photons with an energy above 101910^{19} eV. Photons in the zenith angle range from 30^\circ to 60^\circ can be identified in the overwhelming background of showers initiated by charged cosmic rays through the broader time structure of the signals induced in the water-Cherenkov detectors of the array and the steeper lateral distribution of shower particles reaching ground. Applying the search method to data collected between January 2004 and June 2020, upper limits at 95% CL are set to an E2E^{-2} diffuse flux of ultra-high energy photons above 101910^{19} eV, 2×10192{\times}10^{19} eV and 4×10194{\times}10^{19} eV amounting to 2.11×1032.11{\times}10^{-3}, 3.12×1043.12{\times}10^{-4} and 1.72×1041.72{\times}10^{-4} km2^{-2} sr1^{-1} yr1^{-1}, respectively. While the sensitivity of the present search around 2×10192 \times 10^{19} eV approaches expectations of cosmogenic photon fluxes in the case of a pure-proton composition, it is one order of magnitude above those from more realistic mixed-composition models. The inferred limits have also implications for the search of super-heavy dark matter that are discussed and illustrated

    Demonstrating Agreement between Radio and Fluorescence Measurements of the Depth of Maximum of Extensive Air Showers at the Pierre Auger Observatory

    No full text
    International audienceWe show, for the first time, radio measurements of the depth of shower maximum (XmaxX_\text{max}) of air showers induced by cosmic rays that are compared to measurements of the established fluorescence method at the same location. Using measurements at the Pierre Auger Observatory we show full compatibility between our radio and the previously published fluorescence data set, and between a subset of air showers observed simultaneously with both radio and fluorescence techniques, a measurement setup unique to the Pierre Auger Observatory. Furthermore, we show radio XmaxX_\text{max} resolution as a function of energy and demonstrate the ability to make competitive high-resolution XmaxX_\text{max} measurements with even a sparse radio array. With this, we show that the radio technique is capable of cosmic-ray mass composition studies, both at Auger and at other experiments

    Radio Measurements of the Depth of Air-Shower Maximum at the Pierre Auger Observatory

    Get PDF
    International audienceThe Auger Engineering Radio Array (AERA), part of the Pierre Auger Observatory, is currently the largest array of radio antenna stations deployed for the detection of cosmic rays, spanning an area of 1717 km2^2 with 153 radio stations. It detects the radio emission of extensive air showers produced by cosmic rays in the 308030-80 MHz band. Here, we report the AERA measurements of the depth of the shower maximum (XmaxX_\text{max}), a probe for mass composition, at cosmic-ray energies between 1017.510^{17.5} to 1018.810^{18.8} eV, which show agreement with earlier measurements with the fluorescence technique at the Pierre Auger Observatory. We show advancements in the method for radio XmaxX_\text{max} reconstruction by comparison to dedicated sets of CORSIKA/CoREAS air-shower simulations, including steps of reconstruction-bias identification and correction, which is of particular importance for irregular or sparse radio arrays. Using the largest set of radio air-shower measurements to date, we show the radio XmaxX_\text{max} resolution as a function of energy, reaching a resolution better than 1515 g cm2^{-2} at the highest energies, demonstrating that radio XmaxX_\text{max} measurements are competitive with the established high-precision fluorescence technique. In addition, we developed a procedure for performing an extensive data-driven study of systematic uncertainties, including the effects of acceptance bias, reconstruction bias, and the investigation of possible residual biases. These results have been cross-checked with air showers measured independently with both the radio and fluorescence techniques, a setup unique to the Pierre Auger Observatory

    Impact of the Magnetic Horizon on the Interpretation of the Pierre Auger Observatory Spectrum and Composition Data

    No full text
    International audienceThe flux of ultra-high energy cosmic rays reaching Earth above the ankle energy (5 EeV) can be described as a mixture of nuclei injected by extragalactic sources with very hard spectra and a low rigidity cutoff. Extragalactic magnetic fields existing between the Earth and the closest sources can affect the observed CR spectrum by reducing the flux of low-rigidity particles reaching Earth. We perform a combined fit of the spectrum and distributions of depth of shower maximum measured with the Pierre Auger Observatory including the effect of this magnetic horizon in the propagation of UHECRs in the intergalactic space. We find that, within a specific range of the various experimental and phenomenological systematics, the magnetic horizon effect can be relevant for turbulent magnetic field strengths in the local neighbourhood of order Brms(50100)nG(20Mpc/ds)(100kpc/Lcoh)1/2B_{\rm rms}\simeq (50-100)\,{\rm nG}\,(20\rm{Mpc}/{d_{\rm s})( 100\,\rm{kpc}/L_{\rm coh}})^{1/2}, with dsd_{\rm s} the typical intersource separation and LcohL_{\rm coh} the magnetic field coherence length. When this is the case, the inferred slope of the source spectrum becomes softer and can be closer to the expectations of diffusive shock acceleration, i.e., E2\propto E^{-2}. An additional cosmic-ray population with higher source density and softer spectra, presumably also extragalactic and dominating the cosmic-ray flux at EeV energies, is also required to reproduce the overall spectrum and composition results for all energies down to 0.6~EeV

    Demonstrating Agreement between Radio and Fluorescence Measurements of the Depth of Maximum of Extensive Air Showers at the Pierre Auger Observatory

    No full text
    International audienceWe show, for the first time, radio measurements of the depth of shower maximum (XmaxX_\text{max}) of air showers induced by cosmic rays that are compared to measurements of the established fluorescence method at the same location. Using measurements at the Pierre Auger Observatory we show full compatibility between our radio and the previously published fluorescence data set, and between a subset of air showers observed simultaneously with both radio and fluorescence techniques, a measurement setup unique to the Pierre Auger Observatory. Furthermore, we show radio XmaxX_\text{max} resolution as a function of energy and demonstrate the ability to make competitive high-resolution XmaxX_\text{max} measurements with even a sparse radio array. With this, we show that the radio technique is capable of cosmic-ray mass composition studies, both at Auger and at other experiments

    Limits to gauge coupling in the dark sector set by the non-observation of instanton-induced decay of Super-Heavy Dark Matter in the Pierre Auger Observatory data

    No full text
    We investigate instanton-induced decay processes of super-heavy dark matter particles XX produced during the inflationary epoch. Using data collected at the Pierre Auger Observatory we derive a bound on the reduced coupling constant of gauge interactions in the dark sector: αXeff0.09\alpha_X^{\rm eff} \lesssim 0.09, for 1010<MX/GeV<101610^{10} < M_X/{\rm GeV} < 10^{16}. We show that this upper limit on αXeff\alpha_X^{\rm eff} is complementary to that obtained from the non-observation of tensor modes in the cosmic microwave background

    Testing effects of Lorentz invariance violation in the propagation of astroparticles with the Pierre Auger Observatory

    No full text

    Limits to gauge coupling in the dark sector set by the non-observation of instanton-induced decay of Super-Heavy Dark Matter in the Pierre Auger Observatory data

    No full text
    We investigate instanton-induced decay processes of super-heavy dark matter particles XX produced during the inflationary epoch. Using data collected at the Pierre Auger Observatory we derive a bound on the reduced coupling constant of gauge interactions in the dark sector: αXeff0.09\alpha_X^{\rm eff} \lesssim 0.09, for 1010<MX/GeV<101610^{10} < M_X/{\rm GeV} < 10^{16}. We show that this upper limit on αXeff\alpha_X^{\rm eff} is complementary to that obtained from the non-observation of tensor modes in the cosmic microwave background

    Radio Measurements of the Depth of Air-Shower Maximum at the Pierre Auger Observatory

    No full text
    International audienceThe Auger Engineering Radio Array (AERA), part of the Pierre Auger Observatory, is currently the largest array of radio antenna stations deployed for the detection of cosmic rays, spanning an area of 1717 km2^2 with 153 radio stations. It detects the radio emission of extensive air showers produced by cosmic rays in the 308030-80 MHz band. Here, we report the AERA measurements of the depth of the shower maximum (XmaxX_\text{max}), a probe for mass composition, at cosmic-ray energies between 1017.510^{17.5} to 1018.810^{18.8} eV, which show agreement with earlier measurements with the fluorescence technique at the Pierre Auger Observatory. We show advancements in the method for radio XmaxX_\text{max} reconstruction by comparison to dedicated sets of CORSIKA/CoREAS air-shower simulations, including steps of reconstruction-bias identification and correction, which is of particular importance for irregular or sparse radio arrays. Using the largest set of radio air-shower measurements to date, we show the radio XmaxX_\text{max} resolution as a function of energy, reaching a resolution better than 1515 g cm2^{-2} at the highest energies, demonstrating that radio XmaxX_\text{max} measurements are competitive with the established high-precision fluorescence technique. In addition, we developed a procedure for performing an extensive data-driven study of systematic uncertainties, including the effects of acceptance bias, reconstruction bias, and the investigation of possible residual biases. These results have been cross-checked with air showers measured independently with both the radio and fluorescence techniques, a setup unique to the Pierre Auger Observatory
    corecore