26 research outputs found

    Quantifying maternally derived respiratory syncytial virus specific neutralising antibodies in a birth cohort from coastal Kenya.

    Get PDF
    BACKGROUND: Severe respiratory syncytial virus (RSV) disease occurs predominantly in children under 6 months of age. There is no licensed RSV vaccine. Protection of young infants could be achieved by a maternal vaccine to boost titres of passively transferred protective antibodies. Data on the level and kinetics of functional RSV-specific antibody at birth and over the early infant period would inform vaccine product design. METHODS: From a birth cohort study (2002-2007) in Kilifi, Kenya, 100 participants were randomly selected for whom cord blood and 2 subsequent 3-monthly blood samples within the first year of life, were available. RSV antibodies against the A2 strain of RSV were assayed and recorded as the logarithm (base 2) plaque reduction neutralisation test (PRNT) titre. Analysis by linear regression accounted for within-person clustering. RESULTS: The geometric mean neutralisation antibody titre was 10.6 (SD: 1.13) at birth with a log-linear decay over the first 6 months of life. The estimated rate of decay was -0.58 (SD: 0.20) log2PRNT titre per month and a half-life of 36 days. There was no significant interaction between cord titre and rate of decay with age. Mean cord titres rose and fell in a pattern temporally tracking community virus transmission. CONCLUSIONS: In this study population, RSV neutralising antibody titres decay approximately two-fold every one month. The rate of decay varies widely by individual but is not related to titre at birth. RSV specific cord titres vary seasonally, presumably due to maternal boosting

    Agreement between ELISA and plaque reduction neutralisation assay in Detection of respiratory syncytial virus specific antibodies in a birth Cohort from Kilifi, coastal Kenya.

    Get PDF
    Background: Severe disease associated with respiratory syncytial virus (RSV) infection occurs predominantly among infants under 6 months of age. Vaccines for prevention are in clinical development. Assessment of the vaccine effectiveness in large epidemiological studies requires serological assays which are rapid, economical and standardised between laboratories. The objective of this study was to assess the agreement between two enzyme linked immunosorbent assays (ELISA) and the plaque reduction neutralisation test (PRNT) in quantifying RSV specific antibodies. Methods: Archived sera from 99 participants of the Kilifi Birth Cohort (KBC) study (conducted 2002-2007) were screened for RSV antibodies using 3 methods: ELISA using crude RSV lysate as antigen, a commercial RSV immunoglobulin G (IgG) ELISA kit from IBL International GmbH, and PRNT. Pearson correlation, Bland-Altman plots and regression methods were used in analysis. Results: There was high positive correlation between the IBL RSV IgG ELISA and PRNT antibodies (Pearson r=0.75), and moderate positive correlation between the crude RSV lysate IgG ELISA and PRNT antibodies (r= 0.61). Crude RSV lysate IgG ELISA showed a wider 95% limit of agreement (-1.866, 6.157) with PRNT compared to the IBL RSV IgG ELISA (1.392, 7.595). Mean PRNT titres were estimated within a width of 4.8 log 2PRNT and 5.6 log 2PRNT at 95% prediction interval by IBL RSV IgG and crude RSV lysate IgG ELISA, respectively. Conclusion: Although, the IBL RSV IgG ELISA is observed to provide a reasonable correlate for PRNT assay in detecting RSV specific antibodies, it does not provide an accurate prediction for neutralizing antibody levels. An RSV neutralising antibody level is likely to fall within 2.4 fold higher and 2.4 fold lower than the true value if IBL RSV IgG ELISA is used to replace PRNT assay. The utility of an ELISA assay in vaccine studies should be assessed independent of the PRNT method

    An Intensive, Active Surveillance Reveals Continuous Invasion and High Diversity of Rhinovirus in Households.

    Get PDF
    We report on infection patterns in 5 households (78 participants) delineating the natural history of human rhinovirus (HRV). Nasopharyngeal collections were obtained every 3-4 days irrespective of symptoms, over a 6-month period, with molecular screening for HRV and typing by sequencing VP4/VP2 junction. Overall, 311/3468 (8.9%) collections were HRV positive: 256 were classified into 3 species: 104 (40.6%) HRV-A; 14 (5.5%) HRV-B, and 138 (53.9%) HRV-C. Twenty-six known HRV types (13 HRV-A, 3 HRV-B, and 10 HRV-C) were identified (A75, C1, and C35 being most frequent). We observed continuous invasion and temporal clustering of HRV types in households (range 5-13 over 6 months). Intrahousehold transmission was independent of clinical status but influenced by age. Most (89.0%) of HRV infection episodes were limited to <14 days. Individual repeat infections were frequent (range 1-7 over 6 months), decreasing with age, and almost invariably heterotypic, indicative of lasting type-specific immunity and low cross-type protection

    Human Coronavirus NL63 Molecular Epidemiology and Evolutionary Patterns in Rural Coastal Kenya.

    Get PDF
    Background: Human coronavirus NL63 (HCoV-NL63) is a globally endemic pathogen causing mild and severe respiratory tract infections with reinfections occurring repeatedly throughout a lifetime. Methods: Nasal samples were collected in coastal Kenya through community-based and hospital-based surveillance. HCoV-NL63 was detected with multiplex real-time reverse transcription PCR, and positive samples were targeted for nucleotide sequencing of the spike (S) protein. Additionally, paired samples from 25 individuals with evidence of repeat HCoV-NL63 infection were selected for whole-genome virus sequencing. Results: HCoV-NL63 was detected in 1.3% (75/5573) of child pneumonia admissions. Two HCoV-NL63 genotypes circulated in Kilifi between 2008 and 2014. Full genome sequences formed a monophyletic clade closely related to contemporary HCoV-NL63 from other global locations. An unexpected pattern of repeat infections was observed with some individuals showing higher viral titers during their second infection. Similar patterns for 2 other endemic coronaviruses, HCoV-229E and HCoV-OC43, were observed. Repeat infections by HCoV-NL63 were not accompanied by detectable genotype switching. Conclusions: In this coastal Kenya setting, HCoV-NL63 exhibited low prevalence in hospital pediatric pneumonia admissions. Clade persistence with low genetic diversity suggest limited immune selection, and absence of detectable clade switching in reinfections indicates initial exposure was insufficient to elicit a protective immune response

    Replication Data for: Human Coronavirus NL63 Molecular Epidemiology and Evolutionary Patterns in Rural Coastal Kenya

    No full text
    This dataset contains demographic and laboratory results of human corona virus for samples collected in a household survey study in rural coastal Kenya. Data was collected in December 2009 to June 2010

    Human coronavirus NL63 molecular epidemiology and evolutionary patterns in rural coastal Kenya

    Get PDF
    Background: Human coronavirus NL63 (HCoV-NL63) is a globally endemic pathogen causing mild and severe respiratory tract infections with reinfections occurring repeatedly throughout a lifetime. Methods: Nasal samples were collected in coastal Kenya through community-based and hospital-based surveillance. HCoV-NL63 was detected with multiplex real-time reverse transcription PCR, and positive samples were targeted for nucleotide sequencing of the spike (S) protein. Additionally, paired samples from 25 individuals with evidence of repeat HCoV-NL63 infection were selected for whole-genome virus sequencing. Results: HCoV-NL63 was detected in 1.3% (75/5573) of child pneumonia admissions. Two HCoV-NL63 genotypes circulated in Kilifi between 2008 and 2014. Full genome sequences formed a monophyletic clade closely related to contemporary HCoV-NL63 from other global locations. An unexpected pattern of repeat infections was observed with some individuals showing higher viral titers during their second infection. Similar patterns for 2 other endemic coronaviruses, HCoV-229E and HCoV-OC43, were observed. Repeat infections by HCoV-NL63 were not accompanied by detectable genotype switching. Conclusions: In this coastal Kenya setting, HCoV-NL63 exhibited low prevalence in hospital pediatric pneumonia admissions. Clade persistence with low genetic diversity suggest limited immune selection, and absence of detectable clade switching in reinfections indicates initial exposure was insufficient to elicit a protective immune response

    Relationship between Odds of RSV disease and the levels of Cord blood antibody titres.

    No full text
    <p>A scatter plot showing the odds of RSV associated hospitalization against maternally transferred RSV specific antibodies (log<sub>2</sub>PRNT titres) from cord blood samples of infants (both cases and controls) born in Kilifi, Kenya; 2002–2007. Black symbols denote individual cord titres for all 90 infants.</p
    corecore