4 research outputs found

    Gas flow-directed growth of aligned carbon nanotubes from nonmetallic seeds

    Full text link
    Kite growth is a process that utilizes laminar gas flow in chemical vapor deposition to grow long, well-aligned carbon nanotubes (CNTs) for electronic application. This process uses metal nanoparticles (NPs) as catalytic seeds for CNT growth. However, these NPs remain as impurities in the grown CNT. In this study, nanodiamonds (NDs) with negligible catalytic activity were utilized as nonmetallic seeds instead of metal catalysts because they are stable at high temperatures and facilitate the growth of low-defect CNTs without residual metal impurities. Results demonstrate the successful growth of over 100-μ\mum-long CNTs by carefully controlling the growth conditions. Importantly, we developed an analysis method that utilizes secondary electron (SE) yield to distinguish whether or not CNTs grown from metal impurities. The absence of metallic NPs at the CNT tips was revealed by the SE yield mapping, whereas the presence of some kind of NPs at the same locations was confirmed by atomic force microscopy (AFM). These results suggest that most of the aligned CNTs were grown from nonmetallic seeds, most likely ND-derived NPs, via the tip-growth mode. Structural characterizations revealed the high crystallinity of CNTs, with relatively small diameters. This study presents the first successful use of nonmetallic seeds for kite growth and provides a convincing alternative for starting materials to prepare long, aligned CNTs without metal impurities. The findings of this study pave the way for more convenient fabrication of aligned CNT-based devices, potentially simplifying the production process by avoiding the need for the removal of metal impurities.Comment: Accepted version. Main manuscript: 26 pages, 6 figures. Supporting information: 8 pages, 9 figure

    Thermal defect healing of single-walled carbon nanotubes assisted by supplying carbon-containing reactants

    Full text link
    We experimentally investigated the effect of carbon-containing reactants (C2H2) on healing the defects in single-walled carbon nanotubes (SWCNTs) by thermal processes at high temperatures (∼1100 °C). Introducing C2H2 notably improved the crystallinity of healed SWCNTs compared with the thermal process in Ar ambient without C2H2. The defect healing rate increased with increasing C2H2 partial pressure, and the healing effect of C2H2 was more remarkable for relatively thinner SWCNTs (<1.1 nm). Combined with the relevant theoretical work reported previously, we propose a healing model in which C2H2 helps to heal the vacancy defects and increases the healing rate at high temperatures.This is the version of the article before peer review or editing, as submitted by an author to Applied Physics Express. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://doi.org/10.35848/1882-0786/acaaec

    Transparent and Nonflammable Ionogel Photon Upconverters and Their Solute Transport Properties

    No full text
    Photon upconversion based on triplet–triplet annihilation (TTA-UC) is a technology to convert presently wasted sub-bandgap photons to usable higher-energy photons. In this paper, ionogel TTA-UC samples are first developed by gelatinizing ionic liquids containing triplet-sensitizing and light-emitting molecules using an ionic gelator, resulting in transparent and nonflammable ionogel photon upconverters. The photophysical properties of the ionogel samples are then investigated, and the results suggest that the effect of gelation on the diffusion of the solutes is negligibly small. To further examine this suggestion and acquire fundamental insight into the solute transport properties of the samples, the diffusion of charge-neutral solute species over much longer distances than microscopic interpolymer distances is measured by electrochemical potential-step chronoamperometry. The results reveal that the diffusion of solute species is not affected by gelation within the tested gelator concentration range, supporting our interpretation of the initial results of the photophysical investigations. Overall, our results show that the advantage of nonfluidity can be imparted to ionic-liquid-based photon upconverters without sacrificing molecular diffusion, optical transparency, and nonflammability
    corecore