12 research outputs found

    How to distinguish the Haldane/Large-D state and the intermediate-D state in an S=2 quantum spin chain with the XXZ and on-site anisotropies

    Full text link
    We numerically investigate the ground-state phase diagram of an S=2 quantum spin chain with the XXZXXZ and on-site anisotropies described by H=j(SjxSj+1x+SjySj+1y+ΔSjzSj+1z)+Dj(Sjz)2{\mathcal H}=\sum_j (S_j^x S_{j+1}^x+S_j^y S_{j+1}^y+\Delta S_j^z S_{j+1}^z) + D \sum_j (S_j^z)^2, where Δ\Delta denotes the XXZ anisotropy parameter of the nearest-neighbor interactions and DD the on-site anisotropy parameter. We restrict ourselves to the Δ>0\Delta>0 and D>0D>0 case for simplicity. Our main purpose is to obtain the definite conclusion whether there exists or not the intermediate-DD (ID) phase, which was proposed by Oshikawa in 1992 and has been believed to be absent since the DMRG studies in the latter half of 1990's. In the phase diagram with Δ>0\Delta>0 and D>0D>0 there appear the XY state, the Haldane state, the ID state, the large-DD (LD) state and the N\'eel state. In the analysis of the numerical data it is important to distinguish three gapped states; the Haldane state, the ID state and the LD state. We give a physical and intuitive explanation for our level spectroscopy method how to distinguish these three phases.Comment: Proceedings of "International Conference on Frustration in Condensed Matter (ICFCM)" (Jan. 11-14, 2011, Sendai, Japan

    SU(2)/Z2SU(2)/Z_2 symmetry of the BKT transition and twisted boundary conditio n

    Full text link
    Berezinskii-Kosterlitz-Thouless (BKT) transition, the transition of the 2D sine-Gordon model, plays an important role in the low dimensional physics. We relate the operator content of the BKT transition to that of the SU(2) Wess-Zumino-Witten model, using twisted boundary conditions. With this method, in order to determine the BKT critical point, we can use the level crossing of the lower excitations than the periodic boundary case, thus the convergence to the transition point is highly improved. Then we verify the efficiency of this method by applying to the S=1,2 spin chains.Comment: LaTex2e,, 33 pages, 14 figures in eps file

    Universality class of S=1/2 quantum spin ladder system with the four spin exchange

    Full text link
    We study s=1/2 Heisenberg spin ladder with the four spin exchange. Combining numerical results with the conformal field theory(CFT), we find a phase transition with central charge c=3/2. Since this system has an SU(2) symmetry, we can conclude that this critical theory is described by k=2 SU(2) Wess-Zumino-Witten model with Z2_2 symmetry breaking

    Staggered dimer order in S=1/2 quantum spin ladder system with four spin exchange

    Full text link
    We study the S=1/2 quantum spin ladder system with the four-spin exchange, using density matrix renormalization group method and an exact diagonalization method. Recently, the phase transition in this system and its universality class are studied. But there remain controversies whether the phase transition is second order type or the other type and the nature of order parameter. There are arguments that the massless phase appears. But this does not agree with our previous result. Analyzing DMRG data, we try a new approach in order to determine a phase which appears after the phase transition. We find that the edge state appears in the open boundary condition, investigating excitation energies of states with higher magnetizations.Comment: Submitted to Phys. Rev. B, (REVTeX4

    Nutcracker現象 : 外科的1治療例と診断基準

    Get PDF
    A surgically treated case of the nutcracker phenomenon is reported. Severe left flank pain and gross hematuria were relieved by direct renocaval reimplantation. We proposed the diagnostic criteria of the nutcracker phenomenon causing severe flank pain and/or renal hematuria

    A 99%-efficiency GaN converter for 6.78 MHz magnetic resonant wireless power transfer system

    No full text
    The authors developed a high-efficiency gallium-nitride (GaN) Class-E converter for a 6.78 MHz magnetic resonant wireless power transfer system. A negative-bias gate driver circuit made it possible to use a depletion mode GaN high-electron-mobility transistor (HEMT), and simplified the converter circuit. As the depletion mode GaN HEMT with very small gate–source capacitance provided almost ideal zero-voltage switching, the authors attained a drain efficiency of 98.8% and a total efficiency of 97.7%, including power consumption of a gate driver circuit, at a power output of 33 W. In addition, the authors demonstrated a 6.78 MHz magnetic resonant wireless power transfer system that consisted of the GaN Class-E converter, a pair of magnetic resonant coils 150 mm in diameter with an air-gap distance of 40 mm, and a full-bridge rectifier using Si Schottky barrier diodes. The system achieved a dc–dc efficiency of 82.8% at a power output of 25 W. The efficiencies of coil coupling and the rectifier were estimated to be ∼ 94 and 90%, respectively
    corecore