33 research outputs found

    Effects of electromagnetic fluctuations in plasmas on solar neutrino fluxes

    Full text link
    We explore the effects of electromagnetic (EM) fluctuations in plasmas on solar neutrino fluxes exploiting the fluctuation-dissipation theorem. We find that the EM spectrum in the solar core is enhanced by the EM fluctuations due to the high density of the Sun, which increases the radiation energy density and pressure. By the EM fluctuations involving the modified radiation formula, the central temperature decreases when the central pressure of the Sun is fixed. With a help of the empirical relation between central temperature and neutrino fluxes deduced from the numerical solar models, we present the change in each of the solar neutrino fluxes by the EM fluctuations. We also discuss the enhanced radiation pressure and energy density by the EM fluctuations for other astronomical objects

    One-ninth magnetization plateau stabilized by spin entanglement in a kagome antiferromagnet

    Full text link
    The spin-1/2 antiferromagnetic Heisenberg model on a Kagome lattice is geometrically frustrated, which is expected to promote the formation of many-body quantum entangled states. The most sought-after among these is the quantum spin liquid phase, but magnetic analogs of liquid, solid, and supersolid phases may also occur, producing fractional plateaus in the magnetization. Here, we investigate the experimental realization of these predicted phases in the Kagome material YCu3(OD)6+xBr3-x (x=0.5). By combining thermodynamic and Raman spectroscopic techniques, we provide evidence for fractionalized spinon excitations and observe the emergence of a 1/9 magnetization plateau. These observations establish YCu3(OD)6+xBr3-x as a model material for exploring the 1/9 plateau phase.Comment: to appear in Nature Physics, 33 pagses, 15 figure

    Co-Doping Effect on the Optical Properties of Eu<sup>(2+/3+)</sup> Doped in BaSiO<sub>3</sub>

    No full text
    To investigate the effect of co-doping on the optical properties of Eu(2+/3+) doped in Ba0.98SiO3:0.02Eu, the series of Ba0.96SiO3:0.02Eu, 0.02R+/3+ (R+ = Li+, K+ or Na+, R3+ = La3+ or Y3+) phosphors were synthesized using a solid-state reaction method. The excitation efficiency due to the charge transfer band (CTB) was enhanced via co-doping of R+ and the emission intensity due to Eu3+ was thus increased by 3.7 times compared with that of the single-doped Ba0.98SiO3:0.02Eu3+. However, the co-doping of R+ does not increase the emission intensity of Eu3+ via the direct 7F0→5L6 excitation of Eu3+, but rather decreases it. On the other hand, the emission intensities due to Eu2+ were decreased via the co-doping of R+ but increased via the co-doping of La3+. The present work reveals that the optical properties of Eu3+ or Eu2+ doped in BaSiO3 depend not on the charge state (+ or 3+) of the co-doped ions, but on the co-doped element itself

    Tb3+ and Eu3+ Doped Zinc Phosphate Glasses for Solid State Lighting Applications

    No full text
    Tb3+ and Eu3+ doped zinc phosphate (ZP) glasses were prepared by conventional melt-quenching technique and their photoluminescence properties were investigated in detail. For, Tb3+ doped glasses the intense emission was at 545 nm corresponding to D-5(4)-> F-7(5) transition under 377 nm n-UV excitation. The optimized concentration for Tb3+ doped zinc phosphate glass was 3 mol% and above this concentration quenching takes place. The Eu3+ doped zinc phosphate glass revealed intense emission at 613 nm attributed to the D-5(0)-> F-7(2) transition under intense 392 nm n-UV excitation. The concentration quenching phenomenon was not observed in the Eu3+ doped ZP glasses. The CIE chromaticity coordinates for 3 mol% Tb3+ and 5 mol% Eu3+ doped ZP glasses were found to (0.283, 0.615) and (0.652, 0.331) lying in the green and red regions, respectively. The above mentioned results indicate that the prepared glass are suitable for application in the field of lighting and display devices

    Antihypertensive and Renal Protective Effects of Oryeongsan in Spontaneously Hypertensive Rats

    No full text
    Oryeongsan (ORS), a traditional medicine used to regulate body fluids, has a long history of use as a diuretic in Korea, China, and Japan. ORS is commonly thought to lower blood pressure, but high-quality data on its effects are sparse. The purpose of this study was to determine the antihypertensive and renal protective effects of ORS in rats with hypertension. Spontaneously hypertensive rats (SHR) were divided into two groups with similar mean baseline systolic blood pressure (SBP) and diastolic blood pressure (DBP). Then, 10 mL/kg of vehicle (distilled water) or 200 mg/kg of ORS extract were administered orally once a day for 3 weeks. SBP and DBP were measured at weeks 1, 2, and 3. At the end of the experiment, blood was collected, and kidneys were removed for histology. By the 2nd and 3rd week after initiation of treatment, the ORS-treated group had significantly lower SBP than control-treated rats (191.3 ± 6.5 vs. 206.3 ± 9.8 mmHg, p = 0.022 at the 2nd week; 195.8 ± 7.8 vs. 217.0 ± 8.1 mmHg, p = 0.003 at the 3rd week, respectively). The ORS-treated group trended toward having a lower DBP than control, but there was no significant difference. Blood urea nitrogen (BUN) and serum creatinine (Cr) were not different between the ORS-treated and control groups (BUN: 23.7 ± 1.1 vs. 22.7 ± 2.8 mg/dL, p = 0.508; Cr: 19.0 ± 2.2 vs. 21.6 ± 2.1 μM, p = 0.083, respectively). The percentage of renal tissue affected by tubulointerstitial fibrosis was significantly lower in the ORS-treated group (1.68 ± 0.60) compared to controls (3.17 ± 0.96, p = 0.019). These findings suggest that treatment with ORS reduces SBP and ameliorates renal damage in SHR

    Dynamical Screening Effects on Big Bang Nucleosynthesis

    Full text link
    A moving ion in plasma creates a deformed electric potential depending on the ion velocity, which leads to the distinct screening effect compared to the standard static Salpeter formula. In this paper, adopting the test charge method, we explore the dynamical screening effects on big bang nucleosynthesis (BBN). We find that the high temperature in the early universe causes the ion velocity to be faster than the solar condition so that the electric potential is effectively polarized. However, the low density of background plasma components significantly suppresses the dynamical screening effects on thermonuclear reaction rates during the BBN epoch. We compare our results with several thermonuclear reaction rates for solar fusion considering the dynamical screening effects. Also, we discuss the additional plasma properties in other astrophysical sites for the possible expansion from the present calculation in the future

    Synthesis of a novel hierarchical mesoporous organic-inorganic nanohybrid using polyhedral oligomericsilsesquioxane bricks

    No full text
    A successful method has been demonstrated for the synthesis of a mesoporous organic-inorganic nanohybrid using amine functionalized polyhedral oligomericsilsesquioxane (POSS) and pluronic polymer as a silica precursor and structure directing agent, respectively. The results confirmed the presence of porous structure, along with the high surface area and uniform pore size distribution which can be utilized for various applications namely catalysis, drug-delivery, etc

    Machine learning-based signal quality assessment for cardiac volume monitoring in electrical impedance tomography

    No full text
    Owing to recent advances in thoracic electrical impedance tomography (EIT), a patient’s hemodynamic function can be noninvasively and continuously estimated in real-time by surveilling a cardiac volume signal (CVS) associated with stroke volume and cardiac output. In clinical applications, however, a CVS is often of low quality, mainly because of the patient’s deliberate movements or inevitable motions during clinical interventions. This study aims to develop a signal quality indexing method that assesses the influence of motion artifacts on transient CVSs. The assessment is performed on each cardiac cycle to take advantage of the periodicity and regularity in cardiac volume changes. Time intervals are identified using the synchronized electrocardiography system. We apply divergent machine-learning methods, which can be sorted into discriminative-model and manifold-learning approaches. The use of machine-learning could be suitable for our real-time monitoring application that requires fast inference and automation as well as high accuracy. In the clinical environment, the proposed method can be utilized to provide immediate warnings so that clinicians can minimize confusion regarding patients’ conditions, reduce clinical resource utilization, and improve the confidence level of the monitoring system. Numerous experiments using actual EIT data validate the capability of CVSs degraded by motion artifacts to be accurately and automatically assessed in real-time by machine learning. The best model achieved an accuracy of 0.95, positive and negative predictive values of 0.96 and 0.86, sensitivity of 0.98, specificity of 0.77, and AUC of 0.96

    Photo-luminescence properties of CuCl quantum dots and the dependence of biexciton formation rates on quantum dot sizes

    No full text
    We fabricated CuCl quantum dots (QDs) in a glass matrix. The blue shift of the exciton spectrum caused by quantum confinement effects was observed in the linear absorption and the photo-luminescence (PL) spectrum. Inhomogeneous line broadening was mainly induced by the size distribution of CuCl QDs and we found that the size distribution has Gaussian profiles. By solving the steady state rate equation, we also found that the intensities of biexciton PL were proportional to the square of exciton PL intensities, and the results were well accorded with the experimental results. The formation rates of biexciton were proportional to the volumes of CuCl QDs. \ufffd2001 The Physical Society of JapanNRC publication: N
    corecore