14 research outputs found

    Maximal violation of Bell inequalities by position measurements

    Get PDF
    We show that it is possible to find maximal violations of the CHSH-Bell inequality using only position measurements on a pair of entangled non-relativistic free particles. The device settings required in the CHSH inequality are done by choosing one of two times at which position is measured. For different assignments of the "+" outcome to positions, namely to an interval, to a half line, or to a periodic set, we determine violations of the inequalities, and states where they are attained. These results have consequences for the hidden variable theories of Bohm and Nelson, in which the two-time correlations between distant particle trajectories have a joint distribution, and hence cannot violate any Bell inequality.Comment: 13 pages, 4 figure

    Characterization of informational completeness for covariant phase space observables

    Get PDF
    In the nonrelativistic setting with finitely many canonical degrees of freedom, a shift-covariant phase space observable is uniquely characterized by a positive operator of trace one and, in turn, by the Fourier-Weyl transform of this operator. We study three properties of such observables, and characterize them in terms of the zero set of this transform. The first is informational completeness, for which it is necessary and sufficient that the zero set has dense complement. The second is a version of informational completeness for the Hilbert-Schmidt class, equivalent to the zero set being of measure zero, and the third, known as regularity, is equivalent to the zero set being empty. We give examples demonstrating that all three conditions are distinct. The three conditions are the special cases for p = 1, 2, ∞ of a more general notion of p-regularity defined as the norm density of the span of translates of the operator in the Schatten-p class. We show that the relation between zero sets and p-regularity can be mapped completely to the corresponding relation for functions in classical harmonic analysisIn the nonrelativistic setting with finitely many canonical degrees of freedom, a shift-covariant phase space observable is uniquely characterized by a positive operator of trace one and, in turn, by the Fourier-Weyl transform of this operator. We study three properties of such observables, and characterize them in terms of the zero set of this transform. The first is informational completeness, for which it is necessary and sufficient that the zero set has dense complement. The second is a version of informational completeness for the Hilbert-Schmidt class, equivalent to the zero set being of measure zero, and the third, known as regularity, is equivalent to the zero set being empty. We give examples demonstrating that all three conditions are distinct. The three conditions are the special cases for p = 1, 2, ∞ of a more general notion of p-regularity defined as the norm density of the span of translates of the operator in the Schatten-p class. We show that the relation between zero sets and p-regularity can be mapped completely to the corresponding relation for functions in classical harmonic analysi

    Exact Energy-Time Uncertainty Relation for Arrival Time by Absorption

    Full text link
    We prove an uncertainty relation for energy and arrival time, where the arrival of a particle at a detector is modeled by an absorbing term added to the Hamiltonian. In this well-known scheme the probability for the particle's arrival at the counter is identified with the loss of normalization for an initial wave packet. Under the sole assumption that the absorbing term vanishes on the initial wave function, we show that ΔTΔE≄pℏ/2\Delta T \Delta E \geq \sqrt p \hbar/2 and ΔE≄1.37pℏ \Delta E\geq 1.37\sqrt p\hbar, where ee denotes the mean arrival time, and pp is the probability for the particle to be eventually absorbed. Nearly minimal uncertainty can be achieved in a two-level system, and we propose a trapped ion experiment to realize this situation.Comment: 8 pages, 2 figure

    Full counting statistics of stationary particle beams

    Get PDF
    We present a general theoretical framework for treating particle beams as time-stationary limits of many particle systems. Due to stationarity, the total particle number diverges, and a description in Fock space is no longer possible. Nevertheless, we show that when describing the particle detection via second quantized arrival time observables, such beams exhibit a well-defined “local” counting statistics, that is, full counting statistics of all clicks falling into any given finite time interval. We also treat in detail a realization of such a beam via the long time limit of a source creating particles in a fixed initial state from which they then evolve freely. From the mathematical point of view, the beam is described by a quasi-free state which, in the one-particle level, is locally trace class with respect to the operator valued measure describing the time observable; this ensures the existence of a Fredholm determinant defining the characteristic function of the counting statistic

    A tight Tsirelson inequality for infinitely many outcomes

    Full text link
    We present a novel tight bound on the quantum violations of the CGLMP inequality in the case of infinitely many outcomes. Like in the case of Tsirelson's inequality the proof of our new inequality does not require any assumptions on the dimension of the Hilbert space or kinds of operators involved. However, it is seen that the maximal violation is obtained by the conjectured best measurements and a pure, but not maximally entangled, state. We give an approximate state which, in the limit where the number of outcomes tends to infinity, goes to the optimal state for this setting. This state might be potentially relevant for experimental verifications of Bell inequalities through multi-dimenisonal entangled photon pairs.Comment: 5 pages, 2 figures; improved presentation, change in title, as published

    Quantization and noiseless measurements

    Full text link
    In accordance with the fact that quantum measurements are described in terms of positive operator measures (POMs), we consider certain aspects of a quantization scheme in which a classical variable f:R2→Rf:\R^2\to \R is associated with a unique positive operator measure (POM) EfE^f, which is not necessarily projection valued. The motivation for such a scheme comes from the well-known fact that due to the noise in a quantum measurement, the resulting outcome distribution is given by a POM and cannot, in general, be described in terms of a traditional observable, a selfadjoint operator. Accordingly, we notice that the noiseless measurements are the ones which are determined by a selfadjoint operator. The POM EfE^f in our quantization is defined through its moment operators, which are required to be of the form Γ(fk)\Gamma(f^k), k∈Nk\in \N, with Γ\Gamma a fixed map from classical variables to Hilbert space operators. In particular, we consider the quantization of classical \emph{questions}, that is, functions f:R2→Rf:\R^2\to\R taking only values 0 and 1. We compare two concrete realizations of the map Γ\Gamma in view of their ability to produce noiseless measurements: one being the Weyl map, and the other defined by using phase space probability distributions.Comment: 15 pages, submitted to Journal of Physics

    Tunneling times with covariant measurements

    Full text link
    We consider the time delay of massive, non-relativistic, one-dimensional particles due to a tunneling potential. In this setting the well-known Hartman effect asserts that often the sub-ensemble of particles going through the tunnel seems to cross the tunnel region instantaneously. An obstacle to the utilization of this effect for getting faster signals is the exponential damping by the tunnel, so there seems to be a trade-off between speedup and intensity. In this paper we prove that this trade-off is never in favor of faster signals: the probability for a signal to reach its destination before some deadline is always reduced by the tunnel, for arbitrary incoming states, arbitrary positive and compactly supported tunnel potentials, and arbitrary detectors. More specifically, we show this for several different ways to define ``the same incoming state'' and ''the same detector'' when comparing the settings with and without tunnel potential. The arrival time measurements are expressed in the time-covariant approach, but we also allow the detection to be a localization measurement at a later time.Comment: 12 pages, 2 figure
    corecore