6 research outputs found

    Status of the BELLE II Pixel Detector

    Get PDF
    The Belle II experiment at the super KEK B-factory (SuperKEKB) in Tsukuba, Japan, has been collecting e+ee^+e^− collision data since March 2019. Operating at a record-breaking luminosity of up to 4.7×1034cm2s14.7×10^{34} cm^{−2}s^{−1}, data corresponding to 424fb1424 fb^{−1} has since been recorded. The Belle II VerteX Detector (VXD) is central to the Belle II detector and its physics program and plays a crucial role in reconstructing precise primary and decay vertices. It consists of the outer 4-layer Silicon Vertex Detector (SVD) using double sided silicon strips and the inner two-layer PiXel Detector (PXD) based on the Depleted P-channel Field Effect Transistor (DePFET) technology. The PXD DePFET structure combines signal generation and amplification within pixels with a minimum pitch of (50×55)μm2(50×55) μm^2. A high gain and a high signal-to-noise ratio allow thinning the pixels to 75μm75 μm while retaining a high pixel hit efficiency of about 9999%. As a consequence, also the material budget of the full detector is kept low at 0.21≈0.21%XX0\frac{X}{X_0} per layer in the acceptance region. This also includes contributions from the control, Analog-to-Digital Converter (ADC), and data processing Application Specific Integrated Circuits (ASICs) as well as from cooling and support structures. This article will present the experience gained from four years of operating PXD; the first full scale detector employing the DePFET technology in High Energy Physics. Overall, the PXD has met the expectations. Operating in the intense SuperKEKB environment poses many challenges that will also be discussed. The current PXD system remains incomplete with only 20 out of 40 modules having been installed. A full replacement has been constructed and is currently in its final testing stage before it will be installed into Belle II during the ongoing long shutdown that will last throughout 2023

    Belle II Pixel Detector Commissioning and Operational Experience

    Get PDF

    Data quality monitors of vertex detectors at the start of the Belle II experiment

    No full text
    The Belle II experiment features a substantial upgrade of the Belle detector and will operate at the SuperKEKB energy-asymmetric e+e− collider at KEK in Tsukuba, Japan. The accelerator completed its first phase of commissioning in 2016, and the Belle II detector saw its first electron-positron collisions in April 2018. Belle II features a newly designed silicon vertex detector based on double-sided strip layers and DEPFET pixel layers. A subset of the vertex detector was operated in 2018 to determine background conditions (Phase 2 operation). The collaboration completed full detector installation in January 2019, and the experiment started full data taking. This paper will report on the final arrangement of the silicon vertex detector part of Belle II with a focus on online monitoring of detector conditions and data quality, on the design and use of diagnostic and reference plots, and on integration with the software framework of Belle II. Data quality monitoring plots will be discussed with a focus on simulation and acquired cosmic and collision data

    Alignment for the first precision measurements at Belle II

    No full text
    International audienceOn March 25th 2019, the Belle II detector recorded the first collisions delivered by the SuperKEKB accelerator. This marked the beginning of the physics run with vertex detector.The vertex detector was aligned initially with cosmic ray tracks without magnetic field simultaneously with the drift chamber. The alignment method is based on Millepede II and the General Broken Lines track model and includes also the muon system or primary vertex position alignment. To control weak modes, we employ sensitive validation tools and various track samples can be used as alignment input, from straight cosmic tracks to mass-constrained decays.With increasing luminosity and experience, the alignment is approaching the target performance, crucial for the first physics analyses in the era of Super-BFactories. We will present the software framework for the detector calibration and alignment, the results from the first physics run and the prospects in view of the experience with the first data

    Alignment for the first precision measurements at Belle II

    Get PDF
    On March 25th 2019, the Belle II detector recorded the first collisions delivered by the SuperKEKB accelerator. This marked the beginning of the physics run with vertex detector. The vertex detector was aligned initially with cosmic ray tracks without magnetic field simultaneously with the drift chamber. The alignment method is based on Millepede II and the General Broken Lines track model and includes also the muon system or primary vertex position alignment. To control weak modes, we employ sensitive validation tools and various track samples can be used as alignment input, from straight cosmic tracks to mass-constrained decays. With increasing luminosity and experience, the alignment is approaching the target performance, crucial for the first physics analyses in the era of Super-BFactories. We will present the software framework for the detector calibration and alignment, the results from the first physics run and the prospects in view of the experience with the first data

    Data quality monitors of vertex detectors at the start of the Belle II experiment

    Get PDF
    The Belle II experiment features a substantial upgrade of the Belle detector and will operate at the SuperKEKB energy-asymmetric e+e− collider at KEK in Tsukuba, Japan. The accelerator completed its first phase of commissioning in 2016, and the Belle II detector saw its first electron-positron collisions in April 2018. Belle II features a newly designed silicon vertex detector based on double-sided strip layers and DEPFET pixel layers. A subset of the vertex detector was operated in 2018 to determine background conditions (Phase 2 operation). The collaboration completed full detector installation in January 2019, and the experiment started full data taking. This paper will report on the final arrangement of the silicon vertex detector part of Belle II with a focus on online monitoring of detector conditions and data quality, on the design and use of diagnostic and reference plots, and on integration with the software framework of Belle II. Data quality monitoring plots will be discussed with a focus on simulation and acquired cosmic and collision data
    corecore