100 research outputs found

    PHYSICO-MECHANICAL AND FILM-FORMING PROPERTIES OF CARBOXYMETHYL CORN STARCH BUTYRATE

    Get PDF
    Objective: This study aims to prepare a new hydrophobic, water-soluble modified corn starch via sequential butyrylation and carboxymethylation and to evaluate its physico-mechanical and film-forming properties.Methods: Butyrylation was carried out in an aqueous suspension using 25%w/w butyric anhydride to yield corn starch butyrate (CSB). CSB was further reacted with chloroacetic acid in alkaline methanolic solvent to carboxymethyl corn starch butyrate (CMCSB). Following the determination of the degrees of carboxymethyl substitution (DS-Cm) and butyrylation (DS-Bu), CMCSB was subjected to analyses by scanning electron microscopic (SEM), X-ray diffraction (XRD), solubility, viscosity, free swelling capacity (FSC), moisture sorption, film formation and water vapor transmission rate (WVTR).Results: DS-Cm of CMCSB was 0.24, while DS-Bu was 0.09. SEM images revealed significant granules fusion and surface roughness. XRD showed a decrease in the degree of crystallinity. CMCSB was soluble in water, with a three times lower viscosity than that of CMCS. Initial FSC of CMCSB was slightly lower than that of CMCS, but gradually increased to a higher FSC after 30 min. A significant drop of moisture sorption from 20% in CMCS to 11% in CMCSB was observed at 93% relative humidity. CMCSB formed intact film with slightly better flexibility than that of CMCS. WVTR of CMCSB was decreased by a maximum of 4.9% compared to CS, and 10.2% compared to CMCS.Conclusion: The introduction of the butyrate group increased the hydrophobicity of the modified starch, altered some of the physic-mechanical properties, and enhanced the barrier property of the modified starch film

    ESTABLISHMENT OF PSEUDERANTHEMUM PALATIFERUM (NEES) RADLK CALLUS CULTURE AND SCREENING OF SECONDARY METABOLITE PRODUCTION

    Get PDF
    Objective: This study aims to establish callus culture of Pseuderanthemum palatiferum and to investigate the production of secondary metabolites from callus extracts.Methods: Callus tissues were initiated using explants from in vitro, aseptically-grown plants. The effects of medium salt base (Murashige & Skoog; MS or Gamborg B5; GB5) and plant growth regulators (2,4-dichlorophenoxyacetic acid; 2,4-D, naphthaleneacetic acid; NAA, benzyl aminopurine; BAP) on the initiation of callus tissues were investigated. The growth of callus culture was studied, and an optimized medium was determined. The production of secondary metabolites in callus was investigated, in comparison with P. palatiferum leaf, on ethanolic extracts using test reagents and thin-layer chromatography (TLC). Results: The condition suitable for initiation of callus from leaf explant was MS salt bases, supplemented with 5.37 µM NAA, which yielded friable callus within 2 w. After transfer, best growth was observed in MS medium supplemented with 5.37 µM NAA and 0.44 µM BAP, after 4 w. Chemical screening and TLC analysis of callus extracts showed presences of some secondary metabolites similar to that of the leaf extract, together with additional phytochemicals not originally found in P. palatiferum plant. Conclusion: Callus culture was successfully established. With optimum culture conditions, this in vitro culture and can serve as another method to obtain medicinally-useful secondary compounds from P. palatiferum.Â

    ANTIFUNGAL EFFECT OF HYPTIS SUAVEOLENS OIL MICROEMULSION BASED CARBOXYMETHYL MUNGBEAN GEL FOR TOPICAL DELIVERY

    Get PDF
    Objective: Conventional topical antifungal formulations limit the effectiveness of antifungal therapy. The aim of this study was to formulate effective antifungal microemulsion of H. suaveolens oil based carboxymethyl mungbean (CMMS) gel.Methods: H. suaveolens oil was obtained by steam distillation. Standard of H. suaveolens oil was performed by gas chromatography mass spectrometry (GC/MS). A high-viscosity CMMS was prepared and its mucoadhesive property was determined using modified USP dissolution test apparatus. H. suaveolens oil microemulsion based CMMS gel as transdermal drug carrier was then developed. Finally, in vitro drug release study and antifungal activity were determined.Results: GC/MS analysis exhibited that b-Caryophyllene, Sabinene and Limonene are the major components of H. suaveolens oil. CMMS gel revealed good mucoadhesive potential which depended on pH of the medium. A higher retention time in pH 4.5 medium than pH 10 medium was observed. Clotrimazole-loaded H. suaveolens oil microemulsions based CMMS gel was successful prepared and in vitro sustained release of clotrimazole was determined. Clotrimazole-loaded H. suaveolens oil microemulsions based CMMS gel had potent antifungal activity against all studied dermatophytes and Candida albican with higher inhibition zone than H. suaveolens oil microemulsions based CMMS gel, H. suaveolens oil and commercial clotrimazole cream.Conclusion: H. suaveolens oil microemulsions based CMMS gel present promising as an effective alternative for topical delivery of antifungal agents.Â

    Synthesis of Carboxymethyl Starch for increasing drilling mud quality in drilling oil and gas wells

    Get PDF
    This paper describes the impact of carboxymethyl starch preparation conditions on physicochemical properties of polysaccharide reagent, widely used as fluid loss reducing agent in drilling mud. Variation of the main parameters of carboxymethylation is researched in the experiment. The following conditions such as temperature and reaction time, amount of water, as well as ratio of NaOH to monochloracetic acid define the characteristics of carboxymethyl starch. The degree of substitution is defined for polysaccharides, as well as the characteristics of samples have been studied by infrared spectroscopy. Rheological characteristics and fluid loss indicator have been investigated to study the impact of the reagents on drilling mud quality

    Comparative analysis of co-processed starches prepared by three different methods

    Get PDF
    Co-processing is currently of interest in the generation of high-functionality excipients for tablet formulation. In the present study, comparative analysis of the powder and tableting properties of three co-processed starches prepared by three different methods was carried out. The co-processed excipients consisting of maize starch (90%), acacia gum (7.5%) and colloidal silicon dioxide (2.5%) were prepared by co-dispersion (SAS-CD), co-fusion (SAS-CF) and co-granulation (SAS-CG). Powder properties of each co-processed excipient were characterized by measuring particle size, flow indices, particle density, dilution potential and lubricant sensitivity ratio. Heckel and Walker models were used to evaluate the compaction behaviour of the three co-processed starches. Tablets were produced with paracetamol as the model drug by direct compression on an eccentric Tablet Press fitted with 12 mm flat-faced punches and compressed at 216 MPa. The tablets were stored at room temperature for 24 h prior to evaluation. The results revealed that co-granulated co-processed excipient (SAS-CG) gave relatively better properties in terms of flow, compressibility, dilution potential, deformation, disintegration, crushing strength and friability. This study has shown that the method of co-processing influences the powder and tableting properties of the co-processed excipient

    Comparative analysis of co-processed starches prepared by three different methods

    Get PDF
    Co-processing is currently of interest in the generation of high-functionality excipients for tablet formulation. In the present study, comparative analysis of the powder and tableting properties of three co-processed starches prepared by three different methods was carried out. The co-processed excipients consisting of maize starch (90%), acacia gum (7.5%) and colloidal silicon dioxide (2.5%) were prepared by co-dispersion (SAS-CD), co-fusion (SAS-CF) and co-granulation (SAS-CG). Powder properties of each co-processed excipient were characterized by measuring particle size, flow indices, particle density, dilution potential and lubricant sensitivity ratio. Heckel and Walker models were used to evaluate the compaction behaviour of the three co-processed starches. Tablets were produced with paracetamol as the model drug by direct compression on an eccentric Tablet Press fitted with 12 mm flat-faced punches and compressed at 216 MPa. The tablets were stored at room temperature for 24 h prior to evaluation. The results revealed that co-granulated co-processed excipient (SAS-CG) gave relatively better properties in terms of flow, compressibility, dilution potential, deformation, disintegration, crushing strength and friability. This study has shown that the method of co-processing influences the powder and tableting properties of the co-processed excipient

    Resistant Starch Contents of Native and Heat-Moisture Treated Jackfruit Seed Starch

    No full text
    Native jackfruit seed starch (JFS) contains 30% w/w type II resistant starch (RS2) and can potentially be developed as a new commercial source of RS for food and pharmaceutical application. Heat-moisture treatment (HMT) was explored as a mean to increase RS content of native JFS. The effect of the conditions was tested at varied moisture contents (MC), temperatures, and times. Moisture levels of 20–25%, together with temperatures 80–110°C, generally resulted in increases of RS amount. The highest amount of RS (52.2%) was achieved under treatment conditions of 25% MC and 80°C, for 16 h (JF-25-80-16). FT-IR peak ratio at 1047/1022 cm−1 suggested increases in ordered structure in several HMT-JFS samples with increased RS. SEM showed no significant change in the granule appearance, except at high moisture/temperature treatment. XRD revealed no significant change in peaks intensities, suggesting the crystallinity within the granule was mostly retained. DSC showed increases in Tg and, in most cases, ΔT, as the MC was increased in the samples. Slight but significant decreases in ΔH were observed in samples with low RS, indicating that a combination of high moisture and temperature might cause partial gelatinization. HMT-JFS with higher RS exhibited less swelling, while the solubility remained mostly unchanged

    CROSS-LINKED CARBOXYMETHYL MUNG BEAN STARCH AS PHARMACEUTICAL GELLING AGENT AND EMULSION STABILIZER

    Get PDF
    Objectives: This study aims to improve and expand the performance of carboxy methyl mung bean starch (CMMS) as a gelling agent and an oil-in-water (o/w) emulsion stabilizer via cross-linking reaction with dichloroacetic acid (DCA).Methods: Mung bean starch was carboxymethylated with chloroacetic acid and subsequently cross-linked with 0.1-10% DCA. Fifteen cross-linked carboxy methyl mung bean starches (CL-MBs) were obtained and the viscosity, clarity and pH of freshly-prepared gels, gels subjected to freeze-thaw cycles, and gels stored for 3 months at 8ºC and 45ºC were evaluated. The best CL-MB was selected and employed as gelling agent and as emulsion stabilizer in the pharmaceutical formulations of Capsicum gel and emulsion gel.Results: The gel formulation containing 5%w/w CMMS cross-linked with 8% DCA (CL-MB-8) as gelling agent was found to be comparable to the formulations using commercial gelling agents. CL-MB-8 was shown to tolerate up to 30%w/w alcohol with no significant effect to the gel characteristics. In the emulsion gel formulation, the use of 3%w/w CL-MB-8 helped stabilizing the o/w emulsion prepared from a mixture of Capsicum oil extract and water (1:3), with 2%w/w TweenÃ’80 as emulsifying agent. The formulation using wet-gum method yielded smooth, creamy gel with consistent color and good viscosity. Microscopic evaluation of the formulation revealed mostly small-sized o/w droplets evenly dispersed in the texture.Conclusion: Cross-linkage with DCA enhanced the viscosity of CMMS gel network and broadened the application of CMMS as gelling agent for herbal extract gel formulation with high alcohol content and also as a stabilizer for o/w emulsion.Â
    corecore