2,028 research outputs found

    Low-energy expansion formula for one-dimensional Fokker-Planck and Schr\"odinger equations with asymptotically periodic potentials

    Full text link
    We consider one-dimensional Fokker-Planck and Schr\"odinger equations with a potential which approaches a periodic function at spatial infinity. We extend the low-energy expansion method, which was introduced in previous papers, to be applicable to such asymptotically periodic cases. Using this method, we study the low-energy behavior of the Green function.Comment: author-created, un-copyedited version of an article accepted for publication in Journal of Physics A: Mathematical and Theoretica

    Instability due to long range Coulomb interaction in a liquid of polarizable particles (polarons, etc.)

    Full text link
    The interaction Hamiltonian for a system of polarons a la Feynman in the presence of long range Coulomb interaction is derived and the dielectric function is computed in mean field. For large enough concentration a liquid of such particles becomes unstable. The onset of the instability is signaled by the softening of a collective optical mode in which all electrons oscillate in phase in their respective self-trapping potential. We associate the instability with a metallization of the system. Optical experiments in slightly doped cuprates and doped nickelates are analyzed within this theory. We discuss why doped cuprates matallize whereas nickelates do not.Comment: 5 pages,1 figur

    Controllable pi junction with magnetic nanostructures

    Get PDF
    We propose a novel Josephson device in which 0 and π\pi states are controlled by an electrical current. In this system, the π\pi state appears in a superconductor/normal metal/superconductor junction due to the non-local spin accumulation in the normal metal which is induced by spin injection from a ferromagnetic electrode. Our proposal offers not only new possibilities for application of superconducting spin-electronic devices but also the in-depth understanding of the spin-dependent phenomena in magnetic nanostructures.Comment: 4 pages, 3 figure

    Helimagnon Bands as Universal Spin Excitations of Chiral Magnets

    Full text link
    MnSi is a cubic compound with small magnetic anisotropy, which stabilizes a helimagnetic spin spiral that reduces to a ferromagnetic and antiferromagnetic state in the long- and short-wavelength limit, respectively. We report a comprehensive inelastic neutron scattering study of the collective magnetic excitations in the helimagnetic state of MnSi. In our study we observe a rich variety of seemingly anomalous excitation spectra, as measured in well over twenty different locations in reciprocal space. Using a model based on only three parameters, namely the measured pitch of the helix, the measured ferromagnetic spin wave stiffness and the amplitude of the signal, as the only free variable, we can simultaneously account for \textit{all} of the measured spectra in excellent quantitative agreement with experiment. Our study identifies the formation of intense, strongly coupled bands of helimagnons as a universal characteristic of systems with weak chiral interactions.Comment: 8 pages, 4 figures, references updated, introduction updated, reformatte

    Collective character of spin excitations in a system of Mn2+^{2+} spins coupled to a two-dimensional electron gas

    Full text link
    We have studied the low energy spin excitations in n-type CdMnTe based dilute magnetic semiconductor quantum wells. For magnetic fields for which the energies for the excitation of free carriers and Mn spins are almost identical an anomalously large Knight shift is observed. Our findings suggests the existence of a magnetic field induced ferromagnetic order in these structures, which is in agreement with recent theoretical predictions [J. K{\"o}nig and A. H. MacDonald, submitted Phys. Rev. Lett. (2002)]Comment: 4 figure

    Manifestation of finite temperature size effects in nanogranular magnetic graphite

    Full text link
    In addition to the double phase transition (with the Curie temperatures T_C=300K and T_{Ct}=144K), a low-temperature anomaly in the dependence of the magnetization is observed in the bulk magnetic graphite (with an average granular size of L=10nm), which is attributed to manifestation of the size effects below the quantum temperature. The best fits of the high-temperature data (using the mean-field Curie-Weiss and Bloch expressions) produced reasonable estimates for the model parameters, such as defects mediated effective spin exchange energy J=12meV (which defines the intragranular Curie temperature T_C) and proximity mediated interactions between neighboring grains (through potential barriers created by thin layers of non-magnetic graphite) with energy J_t=exp(-d/s)J=5.8meV (which defines the intergranular Curie temperature T_{Ct}) with d=1.5nm and s=2nm being the intergranular distance and characteristic length, respectively

    Monte Carlo Study of Magnetic Resistivity in Semiconducting MnTe

    Full text link
    We investigate in this paper properties of the spin resistivity in the magnetic semiconducting MnTe of NiAs structure. MnTe is a crossroad semiconductor with a large band gap. It is an antiferromagnet with the N\'eel temperature around 310K. Due to this high N\'eel temperature, there are many applications using its magnetic properties. The method we use here is the Monte Carlo simulation in which we take into account the interaction between itinerant spins and lattice Mn spins. Our results show a very good agreement with experiments on the shape of the spin resistivity near the N\'eel temperature

    Screening and inplane magnetoresistance of anisotropic two-dimensional gas

    Full text link
    In order to split the influence of the orbital and spin effects on the inplane magnetoresistance of a quasi two-dimensional gas we derive its linear response function and dielectric function for the case of anisotropic effective mass. This result is used for the calculation of elastic transport relaxation time of a quasi two dimensional system in a parallel magnetic field. The relaxation time is proved to be isotropic in the low density limit for the case of charged impurity scattering, allowing to separate the two contributions.Comment: as published. 4 pages, 1 figur

    Sensitivity of a general circulation model to global changes in leaf area index

    Get PDF
    Methods have recently become available for estimating the amount of leaf area at the surface of the Earth using satellite data. Also available are modeled estimates of what global leaf area patterns would look like should the vegetation be in equilibrium with current local climatic and soil conditions. The differences between the actual vegetation distribution and the potential vegetation distribution may reflect the impact of human activity on the Earth\u27s surface. To examine model sensitivity to changes in leaf area index (LAI), global distributions of maximum LAI were used as surface boundary conditions in the National Center for Atmospheric Research community climate model (NCAR CCM2) coupled with the biosphere atmosphere transfer scheme (BATS). Results from 10-year ensemble averages for the months of January and July indicate that the largest effects of the decreased LAI in the actual LAI simulation occur in the northern hemisphere winter at high latitudes despite the fact that direct LAI forcing is negligible in these regions at this time of year. This is possibly a result of LAI forcing in the tropics which has long-ranging effects in the winter of both hemispheres. An assessment of the Asian monsoon region for the month of July shows decreased latent heat flux from the surface, increased surface temperature, and decreased precipitation with the actual LAI distribution. While the statistical significance of the results has not been unambiguously established in these simulations, we suspect that an effect on modeled general circulation dynamics has occurred due to changes of maximum LAI suggesting that further attention needs to be paid to the accurate designation of vegetation parameters. The incorporation of concomitant changes in albedo, vegetation fractional coverage, and roughness length is suggested for further research

    Existence of multi-site intrinsic localized modes in one-dimensional Debye crystals

    Get PDF
    The existence of highly localized multi-site oscillatory structures (discrete multibreathers) in a nonlinear Klein-Gordon chain which is characterized by an inverse dispersion law is proven and their linear stability is investigated. The results are applied in the description of vertical (transverse, off-plane) dust grain motion in dusty plasma crystals, by taking into account the lattice discreteness and the sheath electric and/or magnetic field nonlinearity. Explicit values from experimental plasma discharge experiments are considered. The possibility for the occurrence of multibreathers associated with vertical charged dust grain motion in strongly-coupled dusty plasmas (dust crystals) is thus established. From a fundamental point of view, this study aims at providing a first rigorous investigation of the existence of intrinsic localized modes in Debye crystals and/or dusty plasma crystals and, in fact, suggesting those lattices as model systems for the study of fundamental crystal properties.Comment: 12 pages, 8 figures, revtex forma
    corecore