8 research outputs found

    Reproducibility of computed tomography angiography data analysis using semiautomated plaque quantification software: Implications for the design of longitudinal studies

    Get PDF
    Reproducibility of the quantitative assessment of atherosclerosis by computed tomography coronary angiography (CTCA) is paramount for the design of longitudinal studies. The purpose of this study was to assess the inter- and intra-observer reproducibility using semiautomated CT plaque analysis software in symptomatic individuals. CTCA was performed in 10 symptomatic patients after percutaneous treatment of the culprit lesions and was repeated after 3 years. The plaque quantitative analysis was performed in untreated vessels with mild-tomoderate atherosclerosis and included geometrical and compositional characteristics using semiautomated CT plaque analysis software. A total of 945 matched crosssections from 21 segments were analyzed independently by a second reviewer to assess inter-observer variability; the first observer repeated all the analyses after 3 months to assess intra-observer variability. The observer variability was also compared to the absolute plaque changes detected over time. Agreement was evaluated by Bland-Altman analysis and co

    Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging

    No full text
    AB Background-: One of the features of high-risk atherosclerotic plaques is a preponderance of macrophages. Experimental studies with hyperlipidemic rabbits have shown that ultrasmall superparamagnetic particles of iron oxide (USPIOs) accumulate in plaques with a high macrophage content and that this induces magnetic resonance (MR) signal changes. The purpose of our study was to investigate whether USPIO-enhanced MRI can also be used for in vivo detection of macrophages in human plaques. Methods and Results-: MRI was performed on 11 symptomatic patients scheduled for carotid endarterectomy before and 24 (n=11) and 72 (n=5) hours after administration of USPIOs (Sinerem) at a dose of 2.6 mg Fe/kg. Histological and electron microscopical analyses of the plaques showed USPIOs primarily in macrophages within the plaques in 10 of 11 patients. Histological analysis showed USPIOs in 27 of 36 (75%) of the ruptured and rupture-prone lesions and 1 of 14 (7%) of the stable lesions. Of the patients with USPIO uptake, signal changes in the post-USPIO MRI were observed by 2 observers in the vessel wall in 67 of 123 (54%) and 19 of 55 (35%) quadrants of the T2*-weighted MR images acquired after 24 and 72 hours, respectively. For those quadrants with changes, there was a significant signal decrease of 24% (95% CI, 33% to 15%) in regions of interest in the images acquired after 24 hours, whereas no significant signal change was found after 72 hours. Conclusions-: Accumulation of USPIOs in macrophages in predominantly ruptured and rupture-prone human atherosclerotic lesions caused signal decreases in the in vivo MR images. (C) 2003 American Heart Association, Inc

    Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging

    No full text
    AB Background-: One of the features of high-risk atherosclerotic plaques is a preponderance of macrophages. Experimental studies with hyperlipidemic rabbits have shown that ultrasmall superparamagnetic particles of iron oxide (USPIOs) accumulate in plaques with a high macrophage content and that this induces magnetic resonance (MR) signal changes. The purpose of our study was to investigate whether USPIO-enhanced MRI can also be used for in vivo detection of macrophages in human plaques. Methods and Results-: MRI was performed on 11 symptomatic patients scheduled for carotid endarterectomy before and 24 (n=11) and 72 (n=5) hours after administration of USPIOs (Sinerem) at a dose of 2.6 mg Fe/kg. Histological and electron microscopical analyses of the plaques showed USPIOs primarily in macrophages within the plaques in 10 of 11 patients. Histological analysis showed USPIOs in 27 of 36 (75%) of the ruptured and rupture-prone lesions and 1 of 14 (7%) of the stable lesions. Of the patients with USPIO uptake, signal changes in the post-USPIO MRI were observed by 2 observers in the vessel wall in 67 of 123 (54%) and 19 of 55 (35%) quadrants of the T2*-weighted MR images acquired after 24 and 72 hours, respectively. For those quadrants with changes, there was a significant signal decrease of 24% (95% CI, 33% to 15%) in regions of interest in the images acquired after 24 hours, whereas no significant signal change was found after 72 hours. Conclusions-: Accumulation of USPIOs in macrophages in predominantly ruptured and rupture-prone human atherosclerotic lesions caused signal decreases in the in vivo MR images. (C) 2003 American Heart Association, Inc

    C-reactive protein in peripheral arterial disease: relation to severity of the disease and to future cardiovascular events

    No full text
    BACKGROUND: Serum C-reactive protein (CRP) has proven to be an independent marker of the extent of atherosclerosis in patients with coronary, cerebrovascular, and peripheral arterial disease. In this prospective observational study, we wanted to assess the relationship between serum CRP and extent of disease transversely and longitudinally in time, as well as future cardiovascular complications in patients with peripheral arterial disease (PAD). Hypothesizing that CRP not only is a marker of but also actively participates in atherogenesis, we explored the possibility of CRP production by femoral atherosclerotic plaques. METHODS: Serum CRP was measured as highly sensitive (hsCRP) in 387 patients with PAD attending the vascular clinic of a university and 2 affiliated teaching hospitals. Serum hsCRP was related to the ankle-brachial pressure index (ABPI) as an indication of severity of disease at inclusion and at 12 months' follow-up and to future events (death and coronary, cerebral, and peripheral arterial events). In femoral plaques, the production of CRP was analyzed with reverse transcription-polymerase chain reaction, and CRP plaque localization was assessed with immunostaining on serial tissue sections with antibodies toward CRP, smooth muscle cells, T cells, and macrophages. RESULTS: The hsCRP (average +/- SD) was 3.26 +/- 2.41 mg/L. Serum hsCRP showed a correlation with baseline and 12-month follow-up ABPI (Spearman rank correlation; P < .05 for both correlations). When the patients were divided into three equally sized groups according to baseline serum hsCRP, the ABPI at baseline and at 12 months decreased significantly from the low- to the high-hsCRP group (baseline ABPI: 0.70, 0.65, and 0.57, P < .01; 12-month follow-up ABPI: 0.78, 0.70, and 0.65, P < .01). These associations persisted after correction for conventional risk factors. Furthermore, serum hsCRP was related to the combined end point "death and/or any cardiovascular event" (log-rank test; P = .04) during a median 24-month follow-up period. Reverse transcription-polymerase chain reaction analysis showed CRP production in 4 of 14 femoral plaques. CRP was detected in all femoral plaques, but not in healthy brachial arteries. Immunoreactivity for CRP was observed in smooth muscle cells, macrophages, and T cells. CONCLUSIONS: Serum hsCRP was related to the severity of PAD, showing a relation to future hemodynamic function and cardiovascular events in PAD patients. In addition to coronary plaques, aneurysmal aortas, and failed venous coronary bypasses, femoral plaques also produce CRP, thus illustrating that the production of CRP may represent a universal response to vascular injury and suggesting that vascular CRP may contribute to plaque development

    Prediction of atherosclerotic disease progression using LDL transportmodelling: A serial computed tomographic coronary angiographic study

    No full text
    Aim To investigate the efficacy of low-density lipoprotein (LDL) transport simulation in reconstructed arteries derived from computed tomography coronary angiography (CTCA) to predict coronary segments that are prone to progress. Methods and results Thirty-Two patients admitted with an acute coronary event who underwent 64-slice CTCA after percutaneous coronary intervention and at 3-year follow-up were included in the analysis. The CTCA data wer
    corecore