11 research outputs found

    Advantages of radial volumetric breath-hold examination (VIBE) with k-space weighted image contrast reconstruction (KWIC) over Cartesian VIBE in liver imaging of volunteers simulating inadequate or no breath-holding ability

    Get PDF
    To investigate the superiority of radial volumetric breath-hold examination (r-VIBE) with k-space weighted image contrast reconstruction (KWIC) over Cartesian VIBE (c-VIBE) for reducing motion artefacts. We acquired r-VIBE-KWIC and c-VIBE images in 10 healthy volunteers. Each acquisition lasted 24 seconds. The volunteers held their breath for decreasing lengths of time during the acquisitions, from 24 to 0 seconds (protocols A-E). Magnetic resonance images at the level of the right portal vein and confluence of hepatic veins were assessed by two readers using a five-point scale with a higher number indicating a better study. The mean scores for the complete r-VIBE-KWIC series (r-VIBEfull) and first r-VIBE-KWIC series (r-VIBE1) were not significantly lower than those for c-VIBE in any protocols. The mean scores for c-VIBE were lower than those for r-VIBEfull and r-VIBE1 in protocols C and D. The mean score for c-VIBE was lower than that for r-VIBEfull in protocol E. The mean score for the eighth r-VIBE-KWIC series (r-VIBE8) was lower than that for c-VIBE only in protocol B. r-VIBE-KWIC minimised artefacts relative to c-VIBE at any slice location. The r-VIBE-KWIC's sub-frame images during the breath-holding period were hardly affected by another failed breath-holding period. aEuro cent A two-reader study revealed r-VIBE-KWIC's advantages over c-VIBE aEuro cent The image quality of r-VIBE-KWIC's sub-frame images was maintained during breath holding aEuro cent Full-frame r-VIBE-KWIC images minimized motion artefacts caused by breathing aEuro cent A complete breath holding over half the acquisition time is recommended for c-VIBE aEuro cent c-VIBE was susceptible to respiratory motion especially in the subphrenic region.ArticleEUROPEAN RADIOLOGY.26(8):2790-2797(2016)journal articl

    Radial volumetric imaging breath-hold examination (VIBE) with k-space weighted image contrast (KWIC) for dynamic gadoxetic acid (Gd-EOB-DTPA)-enhanced MRI of the liver: advantages over Cartesian VIBE in the arterial phase

    Get PDF
    To compare radial volumetric imaging breath-hold examination with k-space weighted image contrast reconstruction (r-VIBE-KWIC) to Cartesian VIBE (c-VIBE) in arterial phase dynamic gadoxetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (DCE-MRI) of the liver. We reviewed 53 consecutive DCE-MRI studies performed on a 3-T unit using c-VIBE and 53 consecutive cases performed using r-VIBE-KWIC with full-frame image subset (r-VIBEfull) and sub-frame image subsets (r-VIBEsub; temporal resolution, 2.5-3 s). All arterial phase images were scored by two readers on: (1) contrast-enhancement ratio (CER) in the abdominal aorta; (2) scan timing; (3) artefacts; (4) visualisation of the common, right, and left hepatic arteries. Mean abdominal aortic CERs for c-VIBE, r-VIBEfull, and r-VIBEsub were 3.2, 4.3 and 6.5, respectively. There were significant differences between each group (P < 0.0001). The mean score for c-VIBE was significantly lower than that for r-VIBEfull and r-VIBEsub in all factors except for visualisation of the common hepatic artery (P < 0.05). The mean score of all factors except for scan timing for r-VIBEsub was not significantly different from that for r-VIBEfull. Radial VIBE-KWIC provides higher image quality than c-VIBE, and r-VIBEsub features high temporal resolution without image degradation in arterial phase DCE-MRI. aEuro cent Radial VIBE-KWIC minimised artefact and produced high-quality and high-temporal-resolution images. aEuro cent Maximum abdominal aortic enhancement was observed on sub-frame images of r-VIBE-KWIC. aEuro cent Using r-VIBE-KWIC, optimal arterial phase images were obtained in over 90 %. aEuro cent Using r-VIBE-KWIC, visualisation of the hepatic arteries was improved. aEuro cent A two-reader study revealed r-VIBE-KWIC's advantages over Cartesian VIBE.ArticleEUROPEAN RADIOLOGY. 24(6):1290-1299 (2014)journal articl

    Evaluation of hemodynamic imaging findings of hypervascular hepatocellular carcinoma: comparison between dynamic contrast-enhanced magnetic resonance imaging using radial volumetric imaging breath-hold examination with k-space-weighted image contrast reconstruction and dynamic computed tomography during hepatic arteriography

    Get PDF
    To compare the visualization of hemodynamic imaging findings of hypervascular hepatocellular carcinoma (HCC) on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) using radial volumetric imaging breath-hold examination with k-space-weighted image contrast reconstruction (r-VIBE-KWIC) versus dynamic computed tomography during hepatic arteriography (dyn-CTHA). We retrospectively reviewed the databases of preoperative DCE-MRI using r-VIBE-KWIC, dyn-CTHA, and postoperative pathology of resected specimens. Fourteen patients with 14 hypervascular HCCs underwent both DCE-MRI and dyn-CTHA. The imaging findings of the tumor and adjacent liver parenchyma were assessed on both modalities by two readers. The tumor enhancement time was also compared between the two modalities. On DCE-MRI/dyn-CTHA, early staining, peritumoral low-intensity or low-density bands, corona enhancement, and washout of HCC were observed in 14/14 (100%), 10/12 (83%), 11/14 (78%), and 4/14 (29%) patients, respectively. Pathologically, four HCCs with low-density bands on dyn-CTHA had no fibrous capsules. The median tumor enhancement time on DCE-MRI and dyn-CTHA was 24 (9-24) and 23 (8-35) s, respectively. The correlation coefficient between the two groups was 0.762 (P < 0.002). DCE-MRI using r-VIBE-KWIC has diagnostic potential comparable with that of dyn-CTHA in the hemodynamic evaluation of hypervascular HCC except for the washout phenomenon.ArticleJAPANESE JOURNAL OF RADIOLOGY.36(4):295-302(2018)journal articl

    Radial volumetric imaging breath-hold examination (VIBE) with k-space weighted image contrast (KWIC) for dynamic gadoxetic acid (Gd-EOB-DTPA)-enhanced MRI of the liver: advantages over Cartesian VIBE in the arterial phase

    Get PDF
    To compare radial volumetric imaging breath-hold examination with k-space weighted image contrast reconstruction (r-VIBE-KWIC) to Cartesian VIBE (c-VIBE) in arterial phase dynamic gadoxetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (DCE-MRI) of the liver. We reviewed 53 consecutive DCE-MRI studies performed on a 3-T unit using c-VIBE and 53 consecutive cases performed using r-VIBE-KWIC with full-frame image subset (r-VIBEfull) and sub-frame image subsets (r-VIBEsub; temporal resolution, 2.5-3 s). All arterial phase images were scored by two readers on: (1) contrast-enhancement ratio (CER) in the abdominal aorta; (2) scan timing; (3) artefacts; (4) visualisation of the common, right, and left hepatic arteries. Mean abdominal aortic CERs for c-VIBE, r-VIBEfull, and r-VIBEsub were 3.2, 4.3 and 6.5, respectively. There were significant differences between each group (P < 0.0001). The mean score for c-VIBE was significantly lower than that for r-VIBEfull and r-VIBEsub in all factors except for visualisation of the common hepatic artery (P < 0.05). The mean score of all factors except for scan timing for r-VIBEsub was not significantly different from that for r-VIBEfull. Radial VIBE-KWIC provides higher image quality than c-VIBE, and r-VIBEsub features high temporal resolution without image degradation in arterial phase DCE-MRI. aEuro cent Radial VIBE-KWIC minimised artefact and produced high-quality and high-temporal-resolution images. aEuro cent Maximum abdominal aortic enhancement was observed on sub-frame images of r-VIBE-KWIC. aEuro cent Using r-VIBE-KWIC, optimal arterial phase images were obtained in over 90 %. aEuro cent Using r-VIBE-KWIC, visualisation of the hepatic arteries was improved. aEuro cent A two-reader study revealed r-VIBE-KWIC's advantages over Cartesian VIBE.ArticleEUROPEAN RADIOLOGY. 24(6):1290-1299 (2014)journal articl

    Evaluation of high temporal resolution magnetic resonance imaging of the liver with gadoxetate disodium in combination with compressed sensing and parallel imaging under single breath-holding using a 1.5-T magnetic resonance system

    No full text
    Abstract Background This study aimed to determine the optimal scan time for high temporal resolution magnetic resonance (MR) imaging of the liver with gadoxetate disodium injection in combination with compressed sensing (CS) and parallel imaging (PI) techniques under single breath-holding using a 1.5-T MR system. Methods Sixty-two participants underwent multiple arterial phases of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) of the liver with gadoxetate disodium using fat-suppressed GRE T1-weighted imaging—liver acquisition with volume acceleration (LAVA)—in combination with CS and PI using a 1.5-T MR system. Forty-six and 22 participants underwent 6-s and 10-s scans, respectively. Pre-contrast, multiple arterial, portal venous, and hepatobiliary phase images were acquired. Two radiologists evaluated the visual scores for the outline of the liver, inferior right hepatic vein (IRHV), right portal vein, right hepatic artery, appropriateness of the arterial phase, and overall image quality using a 4- or 5-point scale. Results The overall image quality and the image quality of the outline of the liver in the pre-contrast and arterial phases and IRHV in the pre-contrast phase were significantly better (P < 0.05) in the 10-s scan group than those in the 6-s scan group. No significant difference was observed between the two groups in terms of the appropriateness of the arterial phase (obtaining the optimal arterial phase) (P = 0.731). Conclusions A 10-s scan protocol is recommended for high temporal resolution DCE-MRI of the liver with gadoxetate disodium injection in combination with CS and PI under single breath-holding using a 1.5-T MR system

    Bilateral refractory pneumothorax treated by pleurodesis and bronchial occlusion in a COVID‐19 patient

    No full text
    Abstract Coronavirus disease 2019 (COVID‐19) has become a worldwide outbreak, and it can cause various symptoms and complications. However, pneumothorax secondary to COVID‐19 is relatively uncommon. We herein report a 60‐year‐old man with bilateral refractory pneumothorax with severe COVID‐19. In patients with poor general health and who are difficult to undergo surgery for pneumothorax post‐COVID‐19, internal treatments such as chest drainage, bronchial occlusion, and pleurodesis are essential to relieving refractory pneumothorax. It also indicates that autologous blood patch pleurodesis is a useful method in terms of efficacy and side effects

    Evaluation of hemodynamic imaging findings of hypervascular hepatocellular carcinoma: comparison between dynamic contrast-enhanced magnetic resonance imaging using radial volumetric imaging breath-hold examination with k-space-weighted image contrast reconstruction and dynamic computed tomography during hepatic arteriography

    No full text
    To compare the visualization of hemodynamic imaging findings of hypervascular hepatocellular carcinoma (HCC) on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) using radial volumetric imaging breath-hold examination with k-space-weighted image contrast reconstruction (r-VIBE-KWIC) versus dynamic computed tomography during hepatic arteriography (dyn-CTHA). We retrospectively reviewed the databases of preoperative DCE-MRI using r-VIBE-KWIC, dyn-CTHA, and postoperative pathology of resected specimens. Fourteen patients with 14 hypervascular HCCs underwent both DCE-MRI and dyn-CTHA. The imaging findings of the tumor and adjacent liver parenchyma were assessed on both modalities by two readers. The tumor enhancement time was also compared between the two modalities. On DCE-MRI/dyn-CTHA, early staining, peritumoral low-intensity or low-density bands, corona enhancement, and washout of HCC were observed in 14/14 (100%), 10/12 (83%), 11/14 (78%), and 4/14 (29%) patients, respectively. Pathologically, four HCCs with low-density bands on dyn-CTHA had no fibrous capsules. The median tumor enhancement time on DCE-MRI and dyn-CTHA was 24 (9-24) and 23 (8-35) s, respectively. The correlation coefficient between the two groups was 0.762 (P < 0.002). DCE-MRI using r-VIBE-KWIC has diagnostic potential comparable with that of dyn-CTHA in the hemodynamic evaluation of hypervascular HCC except for the washout phenomenon.ArticleJAPANESE JOURNAL OF RADIOLOGY.36(4):295-302(2018)journal articl
    corecore