619 research outputs found

    Superconducting Properties of MgB2 Bulk Materials Prepared by High Pressure Sintering

    Full text link
    High-density bulk materials of a newly discovered 40K intermetallic MgB2 superconductor were prepared by high pressure sintering. Superconducting transition with the onset temperature of 39K was confirmed by both magnetic and resistive measurements. Magnetization versus field (M-H) curve shows the behavior of a typical Type II superconductor and the lower critical field Hc1(0) estimated from M-H curve is 0.032T. The bulk sample shows good connection between grains and critical current density Jc estimated from the magnetization hysteresis using sample size was 2x104A/cm2 at 20K and 1T. Upper critical field Hc2(0) determined by extrapolating the onset of resistive transition and assuming a dirty limit is 18T.Comment: 3Pages PD

    Microwave Penetration Depth and Quasiparticle Conductivity in PrFeAsO_1-y Single Crystals : Evidence for a Full-Gap Superconductor

    Full text link
    In-plane microwave penetration depth λab\lambda_{ab} and quaiparticle conductivity at 28 GHz are measured in underdoped single crystals of the Fe-based superconductor PrFeAsO1−y_{1-y} (Tc≈35T_c\approx 35 K) by using a sensitive superconducting cavity resonator. λab(T)\lambda_{ab}(T) shows flat dependence at low temperatures, which is incompatible with the presence of nodes in the superconducting gap Δ(k)\Delta({\bf k}). The temperature dependence of the superfluid density demonstrates that the gap is non-zero (Δ/kBTc≳1.6\Delta/k_BT_c\gtrsim 1.6) all over the Fermi surface. The microwave conductivity below TcT_c exhibits an enhancement larger than the coherence peak, reminiscent of high-TcT_c cuprate superconductors.Comment: 4 pages, 3 figures. Version accepted for publication in Phys. Rev. Lett. For related results of hole-doped 122 system, see arXiv:0810.350

    Uniform Mixing of High-Tc Superconductivity and Antiferromagnetism on a Single CuO2 Plane in Hg-based Five-layered Cuprate

    Full text link
    We report a site selective Cu-NMR study on under-doped Hg-based five-layered high-TcT_{\rm c} cuprate HgBa2Ca4Cu5Oy with a Tc=72 K. Antiferromagnetism (AF) has been found to take place at TN=290 K, exhibiting a large antiferromagnetic moment of 0.67-0.69uB at three inner planes (IP's). This value is comparable to the values reported for non-doped cuprates, suggesting that the IP may be in a nearly non-doped regime. Most surprisingly, the AF order is also detected with M(OP)=0.1uB even at two outer planes (OP's) that are responsible for the onset of superconductivity (SC). The high-Tc SC at Tc = 72 K can uniformly coexist on a microscopic level with the AF at OP's. This is the first microscopic evidence for the uniform mixed phase of AF and SC on a single CuO2 plane in a simple environment without any vortex lattice and/or stripe order.Comment: 4 pages, 4 figures. To be published in Phys.Rev.Let

    Severe myoclonic epilepsy in infancy: evolution of seizures

    Get PDF
    Changes in seizure type of severe myoclonic epilepsy (SME) in infancy were reviewed retrospectively in 14 patients (11 males and 3 females) who were followed-up to the age of 7 years or more. The observation period ranged from 5 to 16 years with a mean of 10 years. During the follow-up, three or four types of seizures were seen per patient, but the pattern of appearance and disappearance of each seizure type varied considerably among the patients. Tonic-clonic convulsion, either generalized or unilateral, was seen most consistently through the entire course, and it continued to the end of follow-up in 11 patients (79%). On the contrary, myoclonic seizure, complex partial seizure, and atypical absence often disappeared and reappeared repeatedly during the course. In SME, seizure symptoms varied widely among patients in comparison with other neurological symptoms, and the most consistent core seizure type was tonic-clonic convulsions

    Lower Critical Fields of Superconducting PrFeAsO1−y_{1-y} Single Crystals

    Full text link
    We have studied the lower critical fields H_{c1} of superconducting iron oxipnictide PrFeAsO_{1-y} single crystals for H parallel and perpendicular to the ab-planes. Measurements of the local magnetic induction at positions straddling the sample edge by using a miniature Hall-sensor array clearly resolve the first flux penetration from the Meissner state. The temperature dependence of H_{c1} for H || c is well scaled by the in-plane penetration depth without showing any unusual behavior, in contrast to previous reports. The anisotropy of penetration lengths at low temperatures is estimated to be ~ 2.5, which is much smaller than the anisotropy of the coherence lengths. This is indicative of multiband superconductivity in this system, in which the active band for superconductivity is more anisotropic. We also point out that the local induction measured at a position near the center of the crystal, which has been used in a number of reports for the determination of H_{c1}, might seriously overestimate the obtained H_{c1}-value.Comment: 7 pages, 7 figures, accepted for publication in Phys. Rev.
    • …
    corecore