661 research outputs found

    Microwave Penetration Depth and Quasiparticle Conductivity in PrFeAsO_1-y Single Crystals : Evidence for a Full-Gap Superconductor

    Full text link
    In-plane microwave penetration depth λab\lambda_{ab} and quaiparticle conductivity at 28 GHz are measured in underdoped single crystals of the Fe-based superconductor PrFeAsO1−y_{1-y} (Tc≈35T_c\approx 35 K) by using a sensitive superconducting cavity resonator. λab(T)\lambda_{ab}(T) shows flat dependence at low temperatures, which is incompatible with the presence of nodes in the superconducting gap Δ(k)\Delta({\bf k}). The temperature dependence of the superfluid density demonstrates that the gap is non-zero (Δ/kBTc≳1.6\Delta/k_BT_c\gtrsim 1.6) all over the Fermi surface. The microwave conductivity below TcT_c exhibits an enhancement larger than the coherence peak, reminiscent of high-TcT_c cuprate superconductors.Comment: 4 pages, 3 figures. Version accepted for publication in Phys. Rev. Lett. For related results of hole-doped 122 system, see arXiv:0810.350

    Superconducting gap of overdoped Tl2Ba2CuO6+d observed by Raman scattering

    Full text link
    We report Raman scattering spectra for single crystals of overdoped Tl2Ba2CuO6+d (Tl-2201) at low temperatures. It was observed that the pair-breaking peaks in A1g and B1g spectra radically shift to lower energy with carrier doping. We interpret it as s-wave component mixing into d-wave, although the crystal structure is tetragonal. Since similar phenomena were observed also in YBa2Cu3Oy and Bi2Sr2CaCu2Oz, we conclude that s-wave mixing is a common property for overdoped high-Tc superconductors.Comment: 8 pages, 3 figures, proceedings of SNS200

    Definitive experimental evidence for two-band superconductivity in MgB2

    Full text link
    The superconducting gap of MgB2 has been studied by high-resolution angle-resolved photoemission spectroscopy (ARPES). The momentum(k)-resolving capability of ARPES enables us to identify the s- and p-orbital derived bands predicted from band structure calculations and to successfully measure the superconducting gap on each band. The results show that superconducting gaps with values of 5.5 meV and 2.2 meV open on the s-band and the p-band, respectively, but both the gaps close at the bulk transition temperature, providing a definitive experimental evidence for the two-band superconductivity in MgB2. The experiments validate the role of k-dependent electron-phonon coupling as the origin of multiple-gap superconductivity in MgB2.Comment: PDF file onl
    • …
    corecore