62 research outputs found

    WNT signaling pathway contributes to Dectin-1-dependent inhibition of TLR-induced inflammatory signature

    Get PDF
    Macrophages regulate cell fate decisions during microbial challenges by carefully titrating signaling events activated by innate receptors such as dectin-1 or Toll-like receptors (TLRs). Here, we demonstrate that dectin-1 activation robustly dampens TLR-induced proinflammatory signature in macrophages. Dectin-1 induced the stabilization of β-catenin via spleen tyrosine kinase (Syk)-reactive oxygen species (ROS) signals, contributing to the expression of WNT5A. Subsequently, WNT5A-responsive protein inhibitors of activated STAT (PIAS-1) and suppressor of cytokine signaling 1 (SOCS-1) mediate the downregulation of IRAK-1, IRAK-4, and MyD88, resulting in decreased expression of interleukin 12 (IL-12), IL-1β and tumor necrosis factor alpha (TNF-α). In vivo activation of dectin-1 with pathogenic fungi or ligand resulted in an increased bacterial burden of Mycobacteria, Klebsiella, Staphylococcus, or Escherichia, with a concomitant decrease in TLR-triggered proinflammatory cytokines. All together, our study establishes a new role for dectin-1-responsive inhibitory mechanisms employed by virulent fungi to limit the proinflammatory environment of the host

    Mycobacteria-responsive sonic hedgehog signaling mediates programmed death-ligand 1 and prostaglandin E<SUB>2</SUB>-induced regulatory T cell expansion

    Get PDF
    CD4+CD25+FoxP3+ regulatory T cells (Tregs) are exploited by mycobacteria to subvert the protective host immune responses. The Treg expansion in the periphery requires signaling by professional antigen presenting cells and in particularly dendritic cells (DC). However, precise molecular mechanisms by which mycobacteria instruct Treg expansion via DCs are not established. Here we demonstrate that mycobacteria-responsive sonic hedgehog (SHH) signaling in human DCs leads to programmed death ligand-1 (PD-L1) expression and cyclooxygenase (COX)-2-catalyzed prostaglandin E2 (PGE2) that orchestrate mycobacterial infection-induced expansion of Tregs. While SHH-responsive transcription factor GLI1 directly arbitrated COX-2 transcription, specific microRNAs, miR-324-5p and miR-338-5p, which target PD-L1 were downregulated by SHH signaling. Further, counter-regulatory roles of SHH and NOTCH1 signaling during mycobacterial-infection of human DCs was also evident. Together, our results establish that Mycobacterium directs a fine-balance of host signaling pathways and molecular regulators in human DCs to expand Tregs that favour immune evasion of the pathogen

    Cationic Amino Acid Transporters and Salmonella Typhimurium ArgT Collectively Regulate Arginine Availability towards Intracellular Salmonella Growth

    Get PDF
    Cationic amino acid transporters (mCAT1 and mCAT2B) regulate the arginine availability in macrophages. How in the infected cell a pathogen can alter the arginine metabolism of the host remains to be understood. We reveal here a novel mechanism by which Salmonella exploit mCAT1 and mCAT2B to acquire host arginine towards its own intracellular growth within antigen presenting cells. We demonstrate that Salmonella infected bone marrow derived macrophages and dendritic cells show enhanced arginine uptake and increased expression of mCAT1 and mCAT2B. We show that the mCAT1 transporter is in close proximity to Salmonella containing vacuole (SCV) specifically by live intracellular Salmonella in order to access the macrophage cytosolic arginine pool. Further, Lysosome associated membrane protein 1, a marker of SCV, also was found to colocalize with mCAT1 in the Salmonella infected cell. The intra vacuolar Salmonella then acquire the host arginine via its own arginine transporter, ArgT for growth. The argT knockout strain was unable to acquire host arginine and was attenuated in growth in both macrophages and in mice model of infection. Together, these data reveal survival strategies by which virulent Salmonella adapt to the harsh conditions prevailing in the infected host cells

    PIM2 Induced COX-2 and MMP-9 Expression in Macrophages Requires PI3K and Notch1 Signaling

    Get PDF
    Activation of inflammatory immune responses during granuloma formation by the host upon infection of mycobacteria is one of the crucial steps that is often associated with tissue remodeling and breakdown of the extracellular matrix. In these complex processes, cyclooxygenase-2 (COX-2) plays a major role in chronic inflammation and matrix metalloproteinase-9 (MMP-9) significantly in tissue remodeling. In this study, we investigated the molecular mechanisms underlying Phosphatidyl-myo-inositol dimannosides (PIM2), an integral component of the mycobacterial envelope, triggered COX-2 and MMP-9 expression in macrophages. PIM2 triggers the activation of Phosphoinositide-3 Kinase (PI3K) and Notch1 signaling leading to COX-2 and MMP-9 expression in a Toll-like receptor 2 (TLR2)-MyD88 dependent manner. Notch1 signaling perturbations data demonstrate the involvement of the cross-talk with members of PI3K and Mitogen activated protein kinase pathway. Enforced expression of the cleaved Notch1 in macrophages induces the expression of COX-2 and MMP-9. PIM2 triggered significant p65 nuclear factor -κB (NF-κB) nuclear translocation that was dependent on activation of PI3K or Notch1 signaling. Furthermore, COX-2 and MMP-9 expression requires Notch1 mediated recruitment of Suppressor of Hairless (CSL) and NF-κB to respective promoters. Inhibition of PIM2 induced COX-2 resulted in marked reduction in MMP-9 expression clearly implicating the role of COX-2 dependent signaling events in driving the MMP-9 expression. Taken together, these data implicate PI3K and Notch1 signaling as obligatory early proximal signaling events during PIM2 induced COX-2 and MMP-9 expression in macrophages

    The PE and PPE proteins of Mycobacterium tuberculosis

    No full text
    India already has earned the dubious distinction of being one of the countries with the highest incidence of tuberculosis (TB). The conventional control measures have had little impact on the relentless march of the TB epidemic. Potential solutions to this problem include the development of new drugs and an effective TB vaccine. In this perspective, identification of the mycobacterial components that have important role(s) in the establishment of the infection assumes crucial importance. Mycobacterium tuberculosis is an intracellular pathogen and it resides inside the macrophage, which is considered to be the most important component of the immune system. M. tuberculosis possesses two highly polymorphic sets of genes called the PE and PPE families. These unique families of proteins account for about 10% of the mycobacterial genome and have drawn considerable interest from different schools of M. tuberculosis researchers across the globe. In this review, we discuss the importance of these proteins in the regulation of dendritic cell and macrophage immune-effector functions, as well as the relevance of these proteins in the clinical manifestation of TB. This information may be helpful to better understand the immunological importance of PE/PPE proteins and their roles in mycobacterial virulence. (C) 2011 Elsevier Ltd. All rights reserved

    CXCL1 and CXCL2 Regulate NLRP3 Inflammasome Activation via G-Protein-Coupled Receptor CXCR2

    No full text
    Inflammation is an extensively concerted process that confers protection to the host encountering immune insult. The major inflammatory mediators include IL-1 family members, such as IL-1 beta, and the functional activation of such molecules is arbitrated by their regulated cleavage brought about by components of a multiprotein complex called inflammasome. In this context, NLR family pyrin domain containing 3 (NLRP3) inflammasome activation often acts as a rate-limiting step in regulating critical cell-fate decisions in various inflammatory scenarios. In this study, we identify the G-protein-coupled receptor CXCR2 (recognizing chemokines CXCL1 and CXCL2) as another arm feeding into the regulated activation of NLRP3 inflammasome in macrophages. We demonstrate that in vivo blocking of CXCL1 and CXCL2 can significantly reduce the Mycobacterium tuberculosis-induced bioactive IL-1 beta production. Further, CXCL1 could amplify the inflammasome activation in in vivo mouse models of carrageenan-induced inflammation in footpads and air pouches. The mechanistic insights revealed CXCR2-driven protein kinase C mu-dependent integrin-linked kinase to be essential for CXCL1-mediated activation of NLRP3 inflammasome. Blocking the activity of integrin-linked kinase or protein kinase C mu either by small interfering RNA-mediated knockdown or pharmacological inhibitor compromised inflammasome activation and subsequent production of bioactive IL-1 beta. Taken together, our study demonstrates CXCR2-driven activation of NLRP3 inflammasome in macrophages and indicates a potential host-directed therapeutic target to limit the damaging inflammation associated with overt production of proinflammatory IL-1 beta

    Epigenetics and miRNA during bacteria-induced host immune responses

    No full text
    Various cellular processes including the pathogen-specific immune responses, host-pathogen interactions and the related evasion mechanisms rely on the ability of the immune cells to be reprogrammed accurately and in many cases instantaneously. In this context, the exact functions of epigenetic and miRNA-mediated regulation of genes, coupled with recent advent in techniques that aid such studies, make it an attractive field for research. Here, we review examples that involve the epigenetic and miRNA control of the host immune system during infection with bacteria. Interestingly, many pathogens utilize the epigenetic and miRNA machinery to modify and evade the host immune responses. Thus, we believe that global epigenetic and miRNA mapping of such host-pathogen interactions would provide key insights into their cellular functions and help to identify various determinants for therapeutic value

    The WNT Framework in Shaping Immune Cell Responses During Bacterial Infections

    No full text
    A large proportion of the world is inflicted with health concerns arising from infectious diseases. Moreover, there is a widespread emergence of antibiotic resistance among major infectious agents, partially stemming from their continuous dialog with the host, and their enormous capacity to remodel the latter toward a secure niche. Among the several infection-driven events, moderation of WNT signaling pathway has been identified to be strategically tuned during infections to govern host-pathogen interactions. Primarily known for its role in arbitrating early embryonic developmental events; aberrant activation of the WNT pathway has also been associated with immunological consequences during diverse patho-physiological conditions. Here, we review the different mechanisms by which components of WNT signaling pathways are exploited by discrete bacterial agents for their pathogenesis. Furthermore, recent advances on the cross-talk of WNT with other signaling pathways, the varied modes of WNT-mediated alteration of gene expression, and WNT-dependent post-transcriptional and post-translational regulation of the immune landscape during distinct bacterial infections would be highlighted

    Immunological implications of epidermal growth factor receptor signaling in persistent infections

    No full text
    Infectious diseases account for a large proportion of global health emergencies and are rising more so owing to the paucity of effective vaccination and chemotherapeutic strategies. The severity is compounded by the development of antibiotic resistance among major pathogenic strains, capable of residing in the hostile host microenvironment by hijacking its signaling mechanisms and molecular circuitry. Among such processes, studies on epidermal growth factor receptor (EGFR) have revealed specific contributions of this classical oncogenic signaling axis during distinct infection conditions. Here, we review the current status of EGFR family members in the context of host-pathogen interactions and speculate the possible dimensions of exploration and manipulation of the EGFR pathway for host-directed therapeutic purposes
    corecore