1,447 research outputs found

    3D Weak Gravitational Lensing of the CMB and Galaxies

    Full text link
    In this paper we present a power spectrum formalism that combines the full three-dimensional information from the galaxy ellipticity field, with information from the cosmic microwave background (CMB). We include in this approach galaxy cosmic shear and galaxy intrinsic alignments, CMB deflection, CMB temperature and CMB polarisation data; including the inter-datum power spectra between all quantities. We apply this to forecasting cosmological parameter errors for CMB and imaging surveys for Euclid-like, Planck, ACTPoL, and CoRE-like experiments. We show that the additional covariance between the CMB and ellipticity measurements can improve dark energy equation of state measurements by 15%, and the combination of cosmic shear and the CMB, from Euclid-like and CoRE-like experiments, could in principle measure the sum of neutrino masses with an error of 0.003 eV.Comment: Accepted to MNRA

    A fast empirical method for galaxy shape measurements in weak lensing surveys

    Full text link
    We describe a simple and fast method to correct ellipticity measurements of galaxies from the distortion by the instrumental and atmospheric point spread function (PSF), in view of weak lensing shear measurements. The method performs a classification of galaxies and associated PSFs according to measured shape parameters, and corrects the measured galaxy ellipticites by querying a large lookup table (LUT), built by supervised learning. We have applied this new method to the GREAT10 image analysis challenge, and present in this paper a refined solution that obtains the competitive quality factor of Q = 104, without any shear power spectrum denoising or training. Of particular interest is the efficiency of the method, with a processing time below 3 ms per galaxy on an ordinary CPU.Comment: 8 pages, 6 figures. Metric values updated according to the final GREAT10 analysis software (Kitching et al. 2012, MNRAS 423, 3163-3208), no qualitative changes. Associated code available at http://lastro.epfl.ch/megalu

    3D Photometric Cosmic Shear

    Full text link
    Here we present a number of improvements to weak lensing 3D power spectrum analysis, 3D cosmic shear, that uses the shape and redshift information of every galaxy to constrain cosmological parameters. We show how photometric redshift probability distributions for individual galaxies can be directly included in this statistic with no averaging. We also include the Limber approximation, considerably simplifying full 3D cosmic shear analysis, and we investigate its range of applicability. Finally we show the relationship between weak lensing tomography and the 3D cosmic shear field itself; the steps connecting them being the Limber approximation, a harmonic-space transform and a discretisation in wavenumber. Each method has its advantages: 3D cosmic shear analysis allows straightforward inclusion of all relevant modes, thus ensuring minimum error bars, and direct control of the range of physical wavenumbers probed, to avoid the uncertain highly nonlinear regime. On the other hand, tomography is more convenient for checking systematics through direct investigation of the redshift dependence of the signal. Finally, for tomography, we suggest that the angular modes probed should be redshift-dependent, to recover some of the 3D advantages.Comment: Accepted to MNRAS. 15 pages, 7 figure

    Propagating Residual Biases in Cosmic Shear Power Spectra

    Get PDF
    In this paper we derive a full expression for the propagation of multiplicative and additive shape measurement biases into the cosmic shear power spectrum. In doing so we identify several new terms that are associated with selection effects, as well as cross-correlation terms between the multiplicative and additive biases and the shear field. The computation of the resulting bias in the shear power spectrum scales as the fifth power of the maximum multipole considered. Consequently the calculation is unfeasible for large l-modes, and the only tractable way to assess the full impact of shape measurement biases on cosmic shear power spectrum is through forward modelling of the effects. To linear order in bias parameters the shear power spectrum is only affected by the mean of the multiplicative bias field over a survey and the cross correlation between the additive bias field and the shear field. If the mean multiplicative bias is zero then second order convolutive terms are expected to be orders of magnitude smaller.Comment: 10 pages, accepted to the Open Journal of Astrophysic

    Modulation induced frequency shifts in a CPT-based atomic clock

    Full text link
    We investigate systematic errors associated with a common modulation technique used for phase sensitive detection of a coherent population trapping (CPT) resonance. In particular, we show that modification of the CPT resonance lineshape due to the presence of off-resonant fields leads to frequency shifts which may limit the stability of CPT-based atomic clocks. We also demonstrate that an alternative demodulation technique greatly reduces these effects.Comment: 14 pages, 7 figure

    Figures of Merit for Testing Standard Models: Application to Dark Energy Experiments in Cosmology

    Full text link
    Given a standard model to test, an experiment can be designed to: (i) measure the standard model parameters; (ii) extend the standard model; or (iii) look for evidence of deviations from the standard model. To measure (or extend) the standard model, the Fisher matrix is widely used in cosmology to predict expected parameter errors for future surveys under Gaussian assumptions. In this article, we present a frame- work that can be used to design experiments such that it maximises the chance of finding a deviation from the standard model. Using a simple illustrative example, discussed in the appendix, we show that the optimal experimental configuration can depend dramatically on the optimisation approach chosen. We also show some simple cosmology calculations, where we study Baryonic Acoustic Oscillation and Supernove surveys. In doing so, we also show how external data, such as the positions of the CMB peaks measured by WMAP, and theory priors can be included in the analysis. In the cosmological cases that we have studied (DETF Stage III), we find that the three optimisation approaches yield similar results, which is reassuring and indicates that the choice of optimal experiment is fairly robust at this level. However, this may not be the case as we move to more ambitious future surveys.Comment: Submitted to MNRAS. 12 pages, 9 figure

    Failure of vaccination to prevent outbreaks of foot-and-mouth disease

    Get PDF
    Outbreaks of foot-and-mouth disease persist in dairy cattle herds in Saudi Arabia despite revaccination at intervals of 4-6 months. Vaccine trials provide data on antibody responses following vaccination. Using this information we developed a mathematical model of the decay of protective antibodies with which we estimated the fraction of susceptible animals at a given time after vaccination. The model describes the data well, suggesting over 95% take with an antibody half-life of 43 days. Farm records provided data on the time course of five outbreaks. We applied a 'SLIR' epidemiological model to these data, fitting a single parameter representing disease transmission rate. The analysis provides estimates of the basic reproduction number R(0), which may exceed 70 in some cases. We conclude that the critical intervaccination interval which would provide herd immunity against FMDV is unrealistically short, especially for heterologous challenge. We suggest that it may not be possible to prevent foot-and-mouth disease outbreaks on these farms using currently available vaccines

    Measuring dark energy properties with 3D cosmic shear

    Get PDF
    We present parameter estimation forecasts for present and future 3D cosmic shear surveys. We demonstrate that, in conjunction with results from cosmic microwave background (CMB) experiments, the properties of dark energy can be estimated with very high precision with large-scale, fully 3D weak lensing surveys. In particular, a 5-band, 10,000 square degree ground-based survey to a median redshift of zm=0.7 could achieve 1-σ\sigma marginal statistical errors, in combination with the constraints expected from the CMB Planck Surveyor, of Δ\Deltaw0=0.108 and Δ\Deltawa=0.099 where we parameterize w by w(a)=w0+wa(1-a) where a is the scale factor. Such a survey is achievable with a wide-field camera on a 4 metre class telescope. The error on the value of w at an intermediate pivot redshift of z=0.368 is constrained to Δ\Deltaw(z=0.368)=0.0175. We compare and combine the 3D weak lensing constraints with the cosmological and dark energy parameters measured from planned Baryon Acoustic Oscillation (BAO) and supernova Type Ia experiments, and find that 3D weak lensing significantly improves the marginalized errors. A combination of 3D weak lensing, CMB and BAO experiments could achieve Δ\Deltaw0=0.037 and Δ\Deltawa=0.099. Fully 3D weak shear analysis avoids the loss of information inherent in tomographic binning, and we show that the sensitivity to systematic errors is much less. In conjunction with the fact that the physics of lensing is very soundly based, this analysis demonstrates that deep, wide-angle 3D weak lensing surveys are extremely promising for measuring dark energy properties.Comment: 18 pages, 16 figures. Accepted to MNRAS. Figures now in grayscale. Further discussions on non-Gaussianity and photometric redshift errors. Some references adde
    corecore