86 research outputs found

    Molecular evolutionary trends and biosynthesis pathways in the Oribatida revealed by the genome of Archegozetes longisetosus

    Get PDF
    Background Oribatid mites are a specious order of microarthropods within the subphylum Chelicerata, compromising about 11,000 described species. They are ubiquitously distributed across different microhabitats in all terrestrial ecosystems around the world and were among the first animals colonizing terrestrial habitats as decomposers and scavengers. Noted for their biosynthesis capacities and biochemical diversity, the majority of oribatid mites possess a pair of exocrine opisthonotal oil-glands used for chemical defense and communication. Genomic resources are lacking for oribatids despite their species richness and ecological importance. Results We used a comparative genomic approach to investigate the developmental, sensory and glandular biosynthetic gene repertoire of the clonal, all-female oribatid mite species Archegozetes longisetosus Aoki, a model species used by numerous laboratories for the past 30 years. Here, we present a 190-Mb genome assembly constructed from Nanopore MinION and Illumina sequencing platforms with 23,825 predicted protein-coding genes. Genomic and transcriptional analyses revealed patterns of reduced body segmentation and loss of segmental identity gene abd-A within Acariformes, and unexpected expression of key eye development genes in these eyeless mites across developmental stages. Consistent with the soil dwelling lifestyle, investigation of the sensory genes revealed a species-specific expansion of gustatory receptors, the largest chemoreceptor family in the genome used in olfaction, and evidence of horizontally transferred enzymes used in cell wall degradation of plant and fungal matter, both components of the Archegozetes longisetosus diet. Using biochemical and genomic data, we were able to delineate the backbone biosynthesis of monoterpenes, an important class of compounds found in the major exocrine gland system of Oribatida – the oil glands. Conclusions With the Archegozetes longisetosus genome, we now have the first high-quality, annotated genome of an oribatid mite genome. Given the mite’s strength as an experimental model, the new sequence resources provided here will serve as the foundation for molecular research in Oribatida and will enable a broader understanding of chelicerate evolution

    Adaptation and validation of the Nigerian Igbo Multidimensional Scale of Perceived Social Support in patients with chronic low back pain

    Get PDF
    Social support may be important in the perpetuation of symptoms in chronic low back pain (CLBP). The multidimensional scale of perceived social support (MSPSS) is one of the best measures of social support with applicability in Africa. The aims of this study were to translate, culturally adapt, test-retest, and assess cross-sectional psychometric properties of the Igbo-MSPSS. Methods: Forward and backward translation of the MSPSS was done by clinicians and non-clinician translators and evaluated by a specialist review committee. The adapted measure was piloted amongst twelve adults with CLBP in rural Nigeria. Cronbach's alpha and McDonald's omega coefficient were used for investigating internal consistency. Intra-class correlation coefficient (ICC: two-way random effects model, average of raters' measurements, absolute definition of agreement) reflecting both the degree of correlation and agreement between measurements was used for the statistical investigation of test-retest reliability. Criterion validity of the adapted measure was investigated with the eleven-point box scale, back performance scale, Roland Morris Disability Questionnaire, and World Health Organisation Disability Assessment Schedule amongst 200 people with CLBP in rural Nigeria using Spearman's correlation analyses. Exploratory factor analyses conducted using Kaiser criterion and parallel analysis as methods for determining dimensionality were used to determine the structural validity of the adapted measure amongst the same sample of 200 rural dwellers. Results: Igbo-MSPSS had excellent internal consistency (0.88) and ICC of 0.82. There were moderate correlations with measures associated with the social support construct. The same item-factor pattern in the three-dimensional structure (with Kaiser criterion) as in the original measure and a two-dimensional structure (with parallel analysis) were produced. Conclusions: Igbo-MSPSS is a measure of social support with some evidence of validity and reliability and can be used clinically or for research. Future studies are required to confirm its validity and reliability

    Building consensus around the assessment and interpretation of Symbiodiniaceae diversity

    Get PDF
    Within microeukaryotes, genetic variation and functional variation sometimes accumulate more quickly than morphological differences. To understand the evolutionary history and ecology of such lineages, it is key to examine diversity at multiple levels of organization. In the dinoflagellate family Symbiodiniaceae, which can form endosymbioses with cnidarians (e.g., corals, octocorals, sea anemones, jellyfish), other marine invertebrates (e.g., sponges, molluscs, flatworms), and protists (e.g., foraminifera), molecular data have been used extensively over the past three decades to describe phenotypes and to make evolutionary and ecological inferences. Despite advances in Symbiodiniaceae genomics, a lack of consensus among researchers with respect to interpreting genetic data has slowed progress in the field and acted as a barrier to reconciling observations. Here, we identify key challenges regarding the assessment and interpretation of Symbiodiniaceae genetic diversity across three levels: species, populations, and communities. We summarize areas of agreement and highlight techniques and approaches that are broadly accepted. In areas where debate remains, we identify unresolved issues and discuss technologies and approaches that can help to fill knowledge gaps related to genetic and phenotypic diversity. We also discuss ways to stimulate progress, in particular by fostering a more inclusive and collaborative research community. We hope that this perspective will inspire and accelerate coral reef science by serving as a resource to those designing experiments, publishing research, and applying for funding related to Symbiodiniaceae and their symbiotic partnerships.journal articl

    Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity.

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant

    Building consensus around the assessment and interpretation of Symbiodiniaceae diversity

    Get PDF
    Within microeukaryotes, genetic variation and functional variation sometimes accumulate more quickly than morphological differences. To understand the evolutionary history and ecology of such lineages, it is key to examine diversity at multiple levels of organization. In the dinoflagellate family Symbiodiniaceae, which can form endosymbioses with cnidarians (e.g., corals, octocorals, sea anemones, jellyfish), other marine invertebrates (e.g., sponges, molluscs, flatworms), and protists (e.g., foraminifera), molecular data have been used extensively over the past three decades to describe phenotypes and to make evolutionary and ecological inferences. Despite advances in Symbiodiniaceae genomics, a lack of consensus among researchers with respect to interpreting genetic data has slowed progress in the field and acted as a barrier to reconciling observations. Here, we identify key challenges regarding the assessment and interpretation of Symbiodiniaceae genetic diversity across three levels: species, populations, and communities. We summarize areas of agreement and highlight techniques and approaches that are broadly accepted. In areas where debate remains, we identify unresolved issues and discuss technologies and approaches that can help to fill knowledge gaps related to genetic and phenotypic diversity. We also discuss ways to stimulate progress, in particular by fostering a more inclusive and collaborative research community. We hope that this perspective will inspire and accelerate coral reef science by serving as a resource to those designing experiments, publishing research, and applying for funding related to Symbiodiniaceae and their symbiotic partnerships

    Hospital admission and emergency care attendance risk for SARS-CoV-2 delta (B.1.617.2) compared with alpha (B.1.1.7) variants of concern: a cohort study

    Get PDF
    Background: The SARS-CoV-2 delta (B.1.617.2) variant was first detected in England in March, 2021. It has since rapidly become the predominant lineage, owing to high transmissibility. It is suspected that the delta variant is associated with more severe disease than the previously dominant alpha (B.1.1.7) variant. We aimed to characterise the severity of the delta variant compared with the alpha variant by determining the relative risk of hospital attendance outcomes. Methods: This cohort study was done among all patients with COVID-19 in England between March 29 and May 23, 2021, who were identified as being infected with either the alpha or delta SARS-CoV-2 variant through whole-genome sequencing. Individual-level data on these patients were linked to routine health-care datasets on vaccination, emergency care attendance, hospital admission, and mortality (data from Public Health England's Second Generation Surveillance System and COVID-19-associated deaths dataset; the National Immunisation Management System; and NHS Digital Secondary Uses Services and Emergency Care Data Set). The risk for hospital admission and emergency care attendance were compared between patients with sequencing-confirmed delta and alpha variants for the whole cohort and by vaccination status subgroups. Stratified Cox regression was used to adjust for age, sex, ethnicity, deprivation, recent international travel, area of residence, calendar week, and vaccination status. Findings: Individual-level data on 43 338 COVID-19-positive patients (8682 with the delta variant, 34 656 with the alpha variant; median age 31 years [IQR 17–43]) were included in our analysis. 196 (2·3%) patients with the delta variant versus 764 (2·2%) patients with the alpha variant were admitted to hospital within 14 days after the specimen was taken (adjusted hazard ratio [HR] 2·26 [95% CI 1·32–3·89]). 498 (5·7%) patients with the delta variant versus 1448 (4·2%) patients with the alpha variant were admitted to hospital or attended emergency care within 14 days (adjusted HR 1·45 [1·08–1·95]). Most patients were unvaccinated (32 078 [74·0%] across both groups). The HRs for vaccinated patients with the delta variant versus the alpha variant (adjusted HR for hospital admission 1·94 [95% CI 0·47–8·05] and for hospital admission or emergency care attendance 1·58 [0·69–3·61]) were similar to the HRs for unvaccinated patients (2·32 [1·29–4·16] and 1·43 [1·04–1·97]; p=0·82 for both) but the precision for the vaccinated subgroup was low. Interpretation: This large national study found a higher hospital admission or emergency care attendance risk for patients with COVID-19 infected with the delta variant compared with the alpha variant. Results suggest that outbreaks of the delta variant in unvaccinated populations might lead to a greater burden on health-care services than the alpha variant. Funding: Medical Research Council; UK Research and Innovation; Department of Health and Social Care; and National Institute for Health Research

    Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant
    corecore