1,675 research outputs found

    Graviton Propagators in Supergravity and Noncommutative Gauge Theory

    Get PDF
    We investigate the graviton propagator in the type IIB supergravity background which is dual to 4 dimensional noncommutative gauge theory. We assume that the boundary is located not at the infinity but at the noncommutative scale where the string frame metric exhibits the maximum. We argue that the Neumann boundary condition is the appropriate boundary condition to be adopted at the boundary. We find that the graviton propagator behaves just as that of the 4 dimensional massless graviton. On the other hand, the non-analytic behaviors of the other Kaluza-Klein modes are not significantly affected by the Neumann boundary condition.Comment: 19 page

    BCS-BEC crossover in a relativistic superfluid and its significance to quark matter

    Full text link
    The character change of a superfluid state due to the variation of the attractive force is investigated in the relativistic framework with a massive fermion. Two crossovers are found. One is a crossover from the usual BCS state to the Bose-Einstein condensation (BEC) of bound fermion pairs. The other is from the BEC to the relativistic Bose-Einstein condensation (RBEC) of nearly massless bound pairs where antiparticles as well as particles dominate the thermodynamics. Possible realization of the BEC and RBEC states in the quark matter is also pointed out.Comment: 5 pages, 1 figure, revtex4; (v2) text has been clarified, references updated; (v3) final version to appear in Phys. Rev.

    Setting Children Free: Children’s Independent Movement in the Local Environment

    Get PDF
    Parental concerns about children’s safety and security are restricting children’s independent exploration of the local environment. Children are being denied important opportunities to exercise, to acquire decision-making skills, such as crossing the road safely, and to develop social skills through interaction with their peers. This paper presents findings from the project CAPABLE (Children’s Activities, Perceptions And Behaviour in the Local Environment) being carried out at University College London. Based on findings from fieldwork carried out with children aged 8-11 in Cheshunt, Hertfordshire, the paper shows the effect of factors such as the number of adults at home, having an older sibling, having a car or garden at home and living near to a park on the propensity to be allowed out alone. Then it considers how being allowed out alone affects the amount of time children spend outdoors, playing with friends and watching television. The paper then uses data from children who have been fitted with physical activity monitors and GPS (Global Positioning Satellite) monitors and asked to keep diaries, to show how children’s travel behaviour differs when they are with adults from when they are not

    Finite-Field Ground State of the S=1 Antiferromagnetic-Ferromagnetic Bond-Alternating Chain

    Full text link
    We investigate the finite-field ground state of the S=1 antiferromagnetic-ferromagnetic bond-alternating chain described by the Hamiltonian {\calH}=\sum\nolimits_{\ell}\bigl\{\vecS_{2\ell-1}\cdot\vecS_{2\ell} +J\vecS_{2\ell}\cdot\vecS_{2\ell+1}\bigr\} +D\sum\nolimits_{\ell} \bigl(S_{\ell}^z)^2 -H\textstyle\sum\nolimits_\ell S_\ell^z, where \hbox{J≤0J\leq0} and \hbox{−∞<D<∞-\infty<D<\infty}. We find that two kinds of magnetization plateaux at a half of the saturation magnetization, the 1/2-plateaux, appear in the ground-state magnetization curve; one of them is of the Haldane type and the other is of the large-DD-type. We determine the 1/2-plateau phase diagram on the DD versus JJ plane, applying the twisted-boundary-condition level spectroscopy methods developed by Kitazawa and Nomura. We also calculate the ground-state magnetization curves and the magnetization phase diagrams by means of the density-matrix renormalization-group method

    Ground State Phase Diagram of S=1 XXZ Chains with Uniaxial Single-Ion-Type Anisotropy

    Full text link
    One dimensional S=1 XXZ chains with uniaxial single-ion-type anisotropy are studied by numerical exact diagonalization of finite size systems. The numerical data are analyzed using conformal field theory, the level spectroscopy, phenomenological renormalization group and finite size scaling method. We thus present the first quantitatively reliable ground state phase diagram of this model. The ground states of this model contain the Haldane phase, large-D phase, N\'{e}el phase, two XY phases and the ferromagnetic phase. There are four different types of transitions between these phases: the Brezinskii-Kosterlitz-Thouless type transitions, the Gaussian type transitions, the Ising type transitions and the first order transitions. The location of these critical lines are accurately determined.Comment: 8 pages, 19 figure

    Fermionic zero-modes in type II fivebrane backgrounds

    Get PDF
    The explicit form of the fermionic zero-modes in the fivebrane backgrounds of type IIA and IIB supergravity theories is investigated. In type IIA fivebrane background there are four zero-modes of gravitinos and dilatinos. In type IIB fivebrane background four zero-modes of dilatinos and no zero-modes of gravitinos are found. These zero-modes indicate the four-fermion condensates which have been suggested in a calculation of the tension of the D-brane in fivebrane backgrounds.Comment: 10 page

    SU(2)/Z2SU(2)/Z_2 symmetry of the BKT transition and twisted boundary conditio n

    Full text link
    Berezinskii-Kosterlitz-Thouless (BKT) transition, the transition of the 2D sine-Gordon model, plays an important role in the low dimensional physics. We relate the operator content of the BKT transition to that of the SU(2) Wess-Zumino-Witten model, using twisted boundary conditions. With this method, in order to determine the BKT critical point, we can use the level crossing of the lower excitations than the periodic boundary case, thus the convergence to the transition point is highly improved. Then we verify the efficiency of this method by applying to the S=1,2 spin chains.Comment: LaTex2e,, 33 pages, 14 figures in eps file

    A closer look at string resonances in dijet events at the LHC

    Full text link
    The first string excited state can be observed as a resonance in dijet invariant mass distributions at the LHC, if the scenario of low-scale string with large extra dimensions is realized. A distinguished property of the dijet resonance by string excited states from that the other "new physics" is that many almost degenerate states with various spin compose a single resonance structure. It is examined that how we can obtain evidences of low-scale string models through the analysis of angular distributions of dijet events at the LHC. Some string resonance states of color singlet can obtain large mass shifts through the open string one-loop effect, or through the mixing with closed string states, and the shape of resonance structure can be distorted. Although the distortion is not very large (10% for the mass squared), it might be able to observe the effect at the LHC, if gluon jets and quark jets could be distinguished in a certain level of efficiency.Comment: 12 pages, 8 figure

    Field-induced magnetic ordering in the Haldane system PbNi2V2O8

    Full text link
    The Haldane system PbNi2V2O8 was investigated by the temperature dependent magnetization M(T) measurements at fields higher than H_c, with H_c the critical fields necessary to close the Haldane gap. It is revealed that M(T) for H > H_c exhibits a cusp-like minimum at T_{min}, below which M(T) increases with decreasing T having a convex curve. These features have been observed for both H∥cH \parallel c and H⊥cH \perp c, with c-axis being parallel to the chain. These data indicate the occurrence of field-induced magnetic ordering around T_{min}. Phase boundaries for H∥cH \parallel c and H⊥cH \perp c do not cross each other, consistent with the theoretical calculation for negative single-ion anisotropy D.Comment: 3 figures, submitted to Phys. Rev.

    Phase diagram of S=1 XXZ chain with next-nearest neighbor interaction

    Full text link
    The one dimensional S=1 XXZ model with next-nearest-neighbor interaction α\alpha and Ising-type anisotropy Δ\Delta is studied by using a numerical diagonalization technique. We discuss the ground state phase diagram of this model numerically by the twisted-boundary-condition level spectroscopy method and the phenomenological renormalization group method, and analytically by the spin wave theory. We determine the phase boundaries among the XY phase, the Haldane phase, the ferromagnetic phase and the N\'{e}el phase, and then we confirm the universality class. Moreover, we map this model onto the non-linear σ\sigma model and analyze the phase diagram in the α\alpha ≪\ll -1 and Δ\Delta ∼\sim 1 region by using the renormalization group method.Comment: 18 pages, 10 figure
    • …
    corecore