55 research outputs found

    Bazedoxifene, a selective estrogen receptor modulator, reduces cerebral aneurysm rupture in Ovariectomized rats.

    Get PDF
    BackgroundEstrogen deficiency is thought to be responsible for the higher frequency of aneurysmal subarachnoid hemorrhage in post- than premenopausal women. Estrogen replacement therapy appears to reduce this risk but is associated with significant side effects. We tested our hypothesis that bazedoxifene, a clinically used selective estrogen receptor (ER) modulator with fewer estrogenic side effects, reduces cerebral aneurysm rupture in a new model of ovariectomized rats.MethodsTen-week-old female Sprague-Dawley rats were subjected to ovariectomy, hemodynamic changes, and hypertension to induce aneurysms (ovariectomized aneurysm rats) and treated with vehicle or with 0.3 or 1.0 mg/kg/day bazedoxifene. They were compared with sham-ovariectomized rats subjected to hypertension and hemodynamic changes (HT rats). The vasoprotective effects of bazedoxifene and the mechanisms underlying its efficacy were analyzed.ResultsDuring 12 weeks of observation, the incidence of aneurysm rupture was 52% in ovariectomized rats. With no effect on the blood pressure, treatment with 0.3 or 1.0 mg/kg/day bazedoxifene lowered this rate to 11 and 17%, almost the same as in HT rats (17%). In ovariectomized rats, the mRNA level of ERα, ERβ, and the tissue inhibitor of metalloproteinase-2 was downregulated in the cerebral artery prone to rupture at 5 weeks after aneurysm induction; the mRNA level of interleukin-1β and the matrix metalloproteinase-9 was upregulated. In HT rats, bazedoxifene restored the mRNA level of ERα and ERβ and decreased the level of interleukin-1β and matrix metalloproteinase-9. These findings suggest that bazedoxifene was protective against aneurysmal rupture by alleviating the vascular inflammation and degradation exacerbated by the decrease in ERα and ERβ.ConclusionsOur observation that bazedoxifene decreased the incidence of aneurysmal rupture in ovariectomized rats warrants further studies to validate this response in humans

    Hyperhomocysteinemia induced by excessive methionine intake promotes rupture of cerebral aneurysms in ovariectomized rats.

    Get PDF
    BackgroundHyperhomocysteinemia (HHcy) is associated with inflammation and a rise in the expression of matrix metalloproteinase-9 (MMP-9) in the vascular wall. However, the role of HHcy in the growth and rupture of cerebral aneurysms remains unclear.MethodsThirteen-week-old female Sprague-Dawley rats were subject to bilateral ovariectomy and ligation of the right common carotid artery and fed an 8 % high-salt diet to induce cerebral aneurysms. Two weeks later, they underwent ligation of the bilateral posterior renal arteries. They were divided into two groups and methionine (MET) was or was not added to their drinking water. In another set of experiments, the role of folic acid (FA) against cerebral aneurysms was assessed.ResultsDuring a 12-week observation period, subarachnoid hemorrhage due to aneurysm rupture was observed at the anterior communicating artery (AcomA) or the posterior half of the circle of Willis. HHcy induced by excessive MET intake significantly increased the incidence of ruptured aneurysms at 6-8 weeks. At the AcomA of rats treated with MET, we observed the promotion of aneurysmal growth and infiltration by M1 macrophages. Furthermore, the mRNA level of MMP-9, the ratio of MMP-9 to the tissue inhibitor of metalloproteinase-2, and the level of interleukin-6 were higher in these rats. Treatment with FA abolished the effect of MET, suggesting that the inflammatory response and vascular degradation at the AcomA is attributable to HHcy due to excessive MET intake.ConclusionsWe first demonstrate that in hypertensive ovariectomized rats, HHcy induced by excessive MET intake may be associated with the propensity of the aneurysm wall to rupture

    Comparison between early and late carotid endarterectomy for symptomatic carotid stenosis in relation to oxidized low-density lipoprotein and plaque vulnerability

    Get PDF
    ObjectiveAlthough carotid endarterectomy (CEA), the gold standard in stroke prevention, has been performed in the late stage after the insult, its optimal timing remains unclear. Using biomarkers in plaque and plasma, we evaluated oxidative stress and plaque vulnerability between early and late CEA in symptomatic patients.MethodsWe compared symptomatic stroke patients who underwent early CEA within 4 weeks of the last insult (group A; n = 15) with those who received CEA in the late stage beyond 4 weeks from the last symptom (group B; n = 57). They were divided into vulnerable (group Av, n = 13; group Bv, n = 33) and stable (group As, n = 2; group Bs, n = 24) subgroups according to the pathologic findings on their plaques. We studied the relationships among their primary symptoms, clinical findings, oxidized low-density lipoprotein levels, and gelatinase A (matrix metalloproteinase [MMP]-9) activity in their plaques and plasma.ResultsGroup A had a variety of symptoms; there was no difference in the outcome of CEA between groups A and B. The plaque and plasma oxidized low-density lipoprotein levels were higher in group A than in group B (P < .05). The incidence of pathologically vulnerable plaque was higher in group A than in group B. Plaque oxidized low-density lipoprotein levels and MMP-9 activity were similar in group Av and group Bv and were higher in those groups than in group As and Bs.ConclusionsWe first demonstrated that vulnerable plaques in patients subjected to early CEA manifested a remarkable increase in oxidized low-density lipoprotein and MMP-9 activation. Our findings suggest that early CEA may be beneficial in the aspect of oxidative stress

    Treatment with the PPARγ Agonist Pioglitazone in the Early Post-ischemia Phase Inhibits Pro-inflammatory Responses and Promotes Neurogenesis Via the Activation of Innate- and Bone Marrow-Derived Stem Cells in Rats

    Get PDF
    Neurogenesis is essential for a good post-stroke outcome. Exogenous stem cells are currently being tested to promote neurogenesis after stroke. Elsewhere, we demonstrated that treatment with the PPARγ agonist pioglitazone (PGZ) before cerebral ischemia induction reduced brain damage and activated survival-related genes in ovariectomized (OVX) rats. Here, we tested our hypothesis that post-ischemia treatment with PGZ inhibits brain damage and contributes to neurogenesis via activated stem cells. Bone marrow (BM) cells of 7-week-old Wistar female rats were replaced with BM cells from green fluorescent protein-transgenic (GFP+BM) rats. Three weeks later, they were ovariectomized (OVX/GFP+BM rats). We subjected 7-week-old Wistar male and 13-week-old OVX/GFP+BM rats to 90-min cerebral ischemia. Male and OVX/GFP+BM rats were divided into two groups, one was treated with PGZ (2.5 mg/kg/day) and the other served as the vehicle control (VC). In both male and OVX/GFP+BM rats, post-ischemia treatment with PGZ reduced neurological deficits and the infarct volume. In male rats, PGZ decreased the mRNA level of IL-6 and M1-like macrophages after 24 h. In OVX/GFP+BM rats, PGZ augmented the proliferation of resident stem cells in the subventricular zone (SVZ) and the recruitment of GFP+BM stem cells on days 7–14. Both types of proliferated stem cells migrated from the SVZ into the peri-infarct area. There, they differentiated into mature neurons, glia, and blood vessels in association with activated Akt, MAP2, and VEGF. Post-ischemia treatment with PGZ may offer a new avenue for stroke treatment through contribution to neuroprotection and neurogenesis

    INVOLVEMENT OF NETS IN CEREBRAL AVM

    Get PDF
    BACKGROUND: Cerebral arteriovenous malformations (cAVMs) represent tangles of abnormal vasculature without intervening capillaries. High-pressure vascular channels due to abnormal arterial and venous shunts can lead to rupture. Multiple pathways are involved in the pathobiology of cAVMs including inflammation and genetic factors such as KRAS mutations. Neutrophil release of nuclear chromatin, known as neutrophil extracellular traps (NETs), plays a multifunctional role in infection, inflammation, thrombosis, intracranial aneurysms, and tumor progression. However, the relationship between NETs and the pathobiology of cAVMs remains unknown. We tested whether NETs play a role in the pathobiology of cAVMs. METHODS: We analyzed samples from patients who had undergone surgery for cAVM and immunohistochemically investigated expression of citrullinated histone H3 (CitH3) as a marker of NETs. CitH3 expression was compared among samples from cAVM patients, epilepsy patients, and normal human brain tissue. Expressions of thrombotic and inflammatory markers were also examined immunohistochemically in samples from cAVM patients. RESULTS: Expression of CitH3 derived from neutrophils was observed intravascularly in all cAVM samples but not other samples. Nidi of AVMs showed migration of many Iba-I-positive cells adjacent to the endothelium and endothelial COX2 expression, accompanied by expression of IL-6 and IL-8 in the endothelium and intravascular neutrophils. Unexpectedly, expression of CitH3 was not necessarily localized to the vascular wall and thrombus. CONCLUSIONS: Our results offer the first evidence of intravascular expression of NETs, which might be associated with vascular inflammation in cAVMs

    脳梗塞モデルラットにおける虚血後の時期依存的な抗炎症性M2マクロファージ活性化変調の役割

    Get PDF
    Cerebral ischemia triggers inflammatory changes, and early complications and unfavorable outcomes of endovascular thrombectomy for brain occlusion promote the recruitment of various cell types to the ischemic area. Although anti-inflammatory M2-type macrophages are thought to exert protective effects against cerebral ischemia, little has been clarified regarding the significance of post-ischemic phase-dependent modulation of M2-type macrophages. To test our hypothesis that post-ischemic phase-dependent modulation of macrophages represents a potential therapy against ischemic brain damage, the effects on rats of an M2-type macrophage-specific activator, Gc-protein macrophage-activating factor (GcMAF), were compared with vehicle-treated control rats in the acute (day 0–6) or subacute (day 7–13) phase after ischemia induction. Acute-phase GcMAF treatment augmented both anti-inflammatory CD163+M2-type- and pro-inflammatory CD16+ M1-type macrophages, resulting in no beneficial effects. Conversely, subacute-phase GcMAF injection increased only CD163+ M2-type macrophages accompanied by elevated mRNA levels of arginase-1 and interleukin-4. M2-type macrophages co-localized with CD36+ phagocytic cells led to clearance of the infarct area, which were abrogated by clodronate-liposomes. Expression of survival-related molecules on day 28 at the infarct border was augmented by GcMAF. These data provide new and important insights into the significance of M2-type macrophage-specific activation as post-ischemic phase-dependent therapy

    Downregulation of the CCL2/CCR2 and CXCL10/CXCR3 axes contributes to antitumor effects in a mouse model of malignant glioma

    Get PDF
    Glioblastoma multiforme involves glioma stem cells (GSCs) that are resistant to various therapeutic approaches. Here, we studied the importance of paracrine signaling in the glioma microenvironment by focusing on the celecoxib-mediated role of chemokines C–C motif ligand 2 (CCL2), C-X-C ligand 10 (CXCL10), and their receptors, CCR2 and CXCR3, in GSCs and a GSC-bearing malignant glioma model. C57BL/6 mice were injected with orthotopic GSCs intracranially and divided into groups administered either 10 or 30 mg/kg celecoxib, or saline to examine the antitumor effects associated with chemokine expression. In GSCs, we analyzed cell viability and expression of chemokines and their receptors in the presence/absence of celecoxib. In the malignant glioma model, celecoxib exhibited antitumor effects in a dose dependent manner and decreased protein and mRNA levels of Ccl2 and CxcL10 and Cxcr3 but not of Ccr2. CCL2 and CXCL10 co-localized with Nestin+ stem cells, CD16+ or CD163+ macrophages and Iba-1+ microglia. In GSCs, celecoxib inhibited Ccl2 and Cxcr3 expression in a nuclear factor-kappa B-dependent manner but not Ccr2 and CxcL10. Moreover, Ccl2 silencing resulted in decreased GSC viability. These results suggest that celecoxib-mediated regulation of the CCL2/CCR2 and CXCL10/ CXCR3 axes may partially contribute to glioma-specific antitumor effects

    Could clazosentan, first approved in Japan, improve neurological prognosis after subarachnoid hemorrhage in combination with modified water-electrolyte management?

    Get PDF
    An aneurysmal subarachnoid hemorrhage (aSAH) is a devastating event associated with a high mortality and morbidity rate. Though numerous medications are used to prevent cerebral vasospasm and vasospasm-related cerebral infarction after aSAH, no effective pharmacological treatment has been established. Clazosentan, a highly selective endothelin receptor type A antagonist, was approved for use in Japan in April 2022 based on results of two pivotal randomized, placebo-controlled phase 3 studies (JapicCTI-163369, JapicCTI-163368). These studies indicated that clazosentan significantly reduced the incidence of vasospasm-related morbidity and all-cause mortality after aneurysm coiling and clipping. Clazosentan is thus expected to become a “game changer” for improving the neurological prognosis after aSAH. However, other reports indicate that even when clazosentan or nimodipine are administered for prophylaxis against delayed neurological decline, patients treated with increased colloid administration or hypertonic saline (3% sodium chloride) load exhibit poor functional outcome and higher mortality, suggesting that extra fluid and sodium derived from prophylactic colloid administration contribute to negative outcomes after aSAH. Pharmacological treatments such as clazosentan in addition to perioperative management involving delivery of less water and sodium might be crucial for achieving better outcomes than conventional therapy. Based on a literature review, we present here the future perspectives regarding clazosentan and the necessity for modifying management of the water-electrolyte balance by focusing on endothelin-1 and blood–brain barrier disruption

    Time-dependent and site-dependent morphological changes in rupture-prone arteries : ovariectomized rat intracranial aneurysm model

    Get PDF
    OBJECTIVE The pathogenesis of intracranial aneurysm rupture remains unclear. Because it is difficult to study the time course of human aneurysms and most unruptured aneurysms are stable, animal models are used to investigate the characteristics of intracranial aneurysms. The authors have newly established a rat intracranial aneurysm rupture model that features site-specific ruptured and unruptured aneurysms. In the present study the authors examined the time course of changes in the vascular morphology to clarify the mechanisms leading to rupture. METHODS Ten-week-old female Sprague-Dawley rats were subjected to hemodynamic changes, hypertension, and ovariectomy. Morphological changes in rupture-prone intracranial arteries were examined under a scanning electron microscope and the association with vascular degradation molecules was investigated. RESULTS At 2–6 weeks after aneurysm induction, morphological changes and rupture were mainly observed at the posterior cerebral artery; at 7–12 weeks they were seen at the anterior Willis circle including the anterior communicating artery. No aneurysms at the anterior cerebral artery–olfactory artery bifurcation ruptured, suggesting that the inception of morphological changes is site dependent. On week 6, the messenger RNA level of matrix metalloproteinase–9, interleukin-1β, and the ratio of matrix metalloproteinase–9 to the tissue inhibitor of metalloproteinase–2 was significantly higher at the posterior cerebral artery, but not at the anterior communicating artery, of rats with aneurysms than in sham-operated rats. These findings suggest that aneurysm rupture is attributable to significant morphological changes and an increase in degradation molecules. CONCLUSIONS Time-dependent and site-dependent morphological changes and the level of degradation molecules may be indicative of the vulnerability of aneurysms to rupture

    Progression to In-Hospital Ischemic Stroke

    Get PDF
    Background and Purpose: Little attention has been paid to the pathogenesis of in-hospital stroke, despite poor outcomes and a longer time from stroke onset to treatment. We studied the pathophysiology and biomarkers for detecting patients who progress to in-hospital ischemic stroke (IHS). Methods: Seventy-nine patients with IHS were sequentially recruited in the period 2011–2017. Their characteristics, care, and outcomes were compared with 933 patients who had an out-of-hospital ischemic stroke (OHS) using a prospectively collected database of the Tokushima University Stroke Registry. Results: Active cancer and coronary artery disease were more prevalent in patients with IHS than in those with OHS (53.2 and 27.8% vs. 2.0 and 10.9%, respectively; p < 0.001), the median onset-to-evaluation time was longer (300 vs. 240 min; p = 0.015), and the undetermined etiology was significantly higher (36.7 vs. 2.4%; p < 0.001). Although there was no significant difference in stroke severity at onset between the groups, patients with IHS had higher modified Rankin Scale (mRS) scores (3–6) at discharge (67.1 vs. 50.3%; p = 0.004) and rates of death during hospitalization (16.5 vs. 2.9%; p < 0.001). D-dimer (5.8 vs. 0.8 µg/mL; p < 0.001) and fibrinogen (532 vs. 430 mg/dL; p = 0.014) plasma levels at the time of onset were significantly higher in patients with IHS after propensity score matching. Multivariate logistic regression analysis revealed that active cancer (odds ratio [OR] 2.30; 95% confidence interval [CI] 1.26–4.20), prestroke mRS scores 3–5 (OR 6.78; 95% CI 3.96–11.61), female sex (OR 1.57; 95% CI 1.19–2.08), and age ≥75 years (OR 2.36; 95% CI 1.80–3.08) were associated with poor outcomes. Conclusions: Patients with IHS had poorer outcomes than those with OHS because of a higher prevalence of active cancer and functional dependence before stroke onset. Elevated plasma levels of D-dimer and fibrinogen, especially with active cancer, can help identify patients who are at a higher risk of progression to IHS
    corecore