2 research outputs found

    Rhinovirus prevalence as indicator for efficacy of measures against SARS-CoV-2

    Get PDF
    Abstract Background Non-pharmaceutical measures to control the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) should be carefully tuned as they can impose a heavy social and economic burden. To quantify and possibly tune the efficacy of these anti-SARS-CoV-2 measures, we have devised indicators based on the abundant historic and current prevalence data from other respiratory viruses. Methods We obtained incidence data of 17 respiratory viruses from hospitalized patients and outpatients collected by 37 clinics and laboratories between 2010-2020 in Germany. With a probabilistic model for Bayes inference we quantified prevalence changes of the different viruses between months in the pre-pandemic period 2010-2019 and the corresponding months in 2020, the year of the pandemic with noninvasive measures of various degrees of stringency. Results We discovered remarkable reductions δ in rhinovirus (RV) prevalence by about 25% (95% highest density interval (HDI) [−0.35,−0.15]) in the months after the measures against SARS-CoV-2 were introduced in Germany. In the months after the measures began to ease, RV prevalence increased to low pre-pandemic levels, e.g. in August 2020 δ=−0.14 (95% HDI [−0.28,0.12]). Conclusions RV prevalence is negatively correlated with the stringency of anti-SARS-CoV-2 measures with only a short time delay. This result suggests that RV prevalence could possibly be an indicator for the efficiency for these measures. As RV is ubiquitous at higher prevalence than SARS-CoV-2 or other emerging respiratory viruses, it could reflect the efficacy of noninvasive measures better than such emerging viruses themselves with their unevenly spreading clusters

    Integrin Alpha E (CD103) Limits Virus-Induced IFN-I Production in Conventional Dendritic Cells.

    Get PDF
    Early and strong production of IFN-I by dendritic cells is important to control vesicular stomatitis virus (VSV), however mechanisms which explain this cell-type specific innate immune activation remain to be defined. Here, using a genome wide association study (GWAS), we identified Integrin alpha-E (Itgae, CD103) as a new regulator of antiviral IFN-I production in a mouse model of vesicular stomatitis virus (VSV) infection. CD103 was specifically expressed by splenic conventional dendritic cells (cDCs) and limited IFN-I production in these cells during VSV infection. Mechanistically, CD103 suppressed AKT phosphorylation and mTOR activation in DCs. Deficiency in CD103 accelerated early IFN-I in cDCs and prevented death in VSV infected animals. In conclusion, CD103 participates in regulation of cDC specific IFN-I induction and thereby influences immune activation after VSV infection
    corecore