23 research outputs found

    Plane-wave scattering by self-complementary metasurfaces in terms of electromagnetic duality and Babinet's principle

    Get PDF
    We investigate theoretically electromagnetic plane-wave scattering by self-complementary metasurfaces. By using Babinet's principle extended to metasurfaces with resistive elements, we show that the frequency-independent transmission and reflection are realized for normal incidence of a circularly polarized plane wave onto a self-complementary metasurface, even if there is diffraction. Next, we consider two special classes of self-complementary metasurfaces. We show that self-complementary metasurfaces with rotational symmetry can act as coherent perfect absorbers, and those with translational symmetry compatible with their self-complementarity can split the incident power equally, even for oblique incidences

    Frequency-Independent Response of Self-Complementary Checkerboard Screens

    Get PDF
    This research resolves a long-standing problem on the electromagnetic response of self-complementary metallic screens with checkerboardlike geometry. Although Babinet's principle implies that they show a frequency-independent response, this unusual characteristic has not been observed yet due to the singularities of the metallic point contacts in the checkerboard geometry. We overcome this difficulty by replacing the point contacts with resistive sheets. The proposed structure is prepared and characterized by terahertz time-domain spectroscopy. It is experimentally confirmed that the resistive checkerboard structures exhibit a flat transmission spectrum over 0.1--1.1 THz. It is also demonstrated that self-complementarity can eliminate even the frequency-dependent transmission characteristics of resonant metamaterials.Comment: 6 pages, 5 figures + Supplemental Material (6 pages, 7 figures

    Broadband and energy-concentrating terahertz coherent perfect absorber based on a self-complementary metasurface

    Full text link
    We demonstrate that a self-complementary checkerboard-like metasurface works as a broadband coherent perfect absorber (CPA) when symmetrically illuminated by two counter-propagating incident waves. A theoretical analysis based on wave interference and results of numerical simulations of the proposed metasurface are provided. In addition, we experimentally demonstrate the proposed CPA in the terahertz regime by using a time-domain spectroscopy technique. We observe that the metasurface can work as a CPA below its lowest diffraction frequency. The size of the absorptive areas of the proposed CPA can be much smaller than the incident wavelength. Unlike conventional CPAs, the presented one simultaneously achieves the broadband operation and energy concentration of electromagnetic waves at the deep-subwavelength scale.Comment: 5 pages, 4 figure

    NOR-3, a donor of nitric oxide, increases intracellular Zn²⁺ concentration and decreases cellular thiol content: A model experiment using rat thymocytes, FluoZin-3, and 5-chloromethylfluorescein

    Get PDF
    Our previous study showed that nitroprusside, a donor of nitric oxide (NO), increased intracellular Zn2+ concentration without affecting cellular content of glutathione (GSH) although it has been proposed that the cytotoxicity of NO is resulted from its interaction with glutathione and zinc. Nitroprusside releases not only NO but also cyanides (Fe(II)CN and Fe(III)CN), CN-, Fe2+, and Fe3+. Therefore, such decomposition products may mask NO-induced action on cellular GSH content. In this study, we used NOR-3 as a donor of NO to reveal the effects of NO on intracellular Zn2+ concentration and cellular GSH content in a cytometric manner with fluorescent probes, FluoZin-3-AM and 5-chloromethylfluorescein diacetate. NOR-3 at 1-3 mM significantly increased intracellular Zn2+ concentration and decreased cellular GSH content. After the removal of extracellular Zn2+ by diethylenetriamine-N,N,N',N",N"-pentaacetic acid (DTPA, a chelator for Zn2+), the increase in intracellular Zn2+ concentration by NOR-3 was still observed although DTPA significantly attenuated the increase in intracellular Zn2+ concentration by NOR-3. Results suggest an involvement of both intracellular Zn2+ release and increase in membrane Zn2+ permeability. It is likely that NO induces oxidative stress, leading to an increase in intracellular Zn2+ concentration

    Theoretical study on dynamical planar-chirality switching in checkerboard-like metasurfaces

    No full text
    In this paper, we show that the handedness of a planar chiral checkerboard-like metasurface can be dynamically switched by modulating the local sheet impedance of the metasurface structure. We propose a metasurface design to realize the handedness switching and theoretically analyze its electromagnetic characteristic based on Babinet’s principle. Numerical simulations of the proposed metasurface are performed to validate the theoretical analysis. It is demonstrated that the polarity of asymmetric transmission for circularly polarized waves, which is determined by the planar chirality of the metasurface, is inverted by switching the sheet impedance at the interconnection points of the checkerboard-like structure. The physical origin of the asymmetric transmission is also discussed in terms of the surface current and charge distributions on the metasurface
    corecore