75 research outputs found

    Local Regeneration of Dentin-Pulp Complex Using Controlled Release of FGF-2 and Naturally Derived Sponge-Like Scaffolds

    Get PDF
    Restorative and endodontic procedures have been recently developed in an attempt to preserve the vitality of dental pulp after exposure to external stimuli, such as caries infection or traumatic injury. When damage to dental pulp is reversible, pulp wound healing can proceed, whereas irreversible damage induces pathological changes in dental pulp, eventually requiring its removal. Nonvital teeth lose their defensive abilities and become severely damaged, resulting in extraction. Development of regeneration therapy for the dentin-pulp complex is important to overcome limitations with presently available therapies. Three strategies to regenerate the dentin-pulp complex have been proposed; regeneration of the entire tooth, local regeneration of the dentin-pulp complex from amputated dental pulp, and regeneration of dental pulp from apical dental pulp or periapical tissues. In this paper, we focus on the local regeneration of the dentin-pulp complex by application of exogenous growth factors and scaffolds to amputated dental pulp

    The Current and Future Therapies of Bone Regeneration to Repair Bone Defects

    Get PDF
    Bone defects often result from tumor resection, congenital malformation, trauma, fractures, surgery, or periodontitis in dentistry. Although dental implants serve as an effective treatment to recover mouth function from tooth defects, many patients do not have the adequate bone volume to build an implant. The gold standard for the reconstruction of large bone defects is the use of autogenous bone grafts. While autogenous bone graft is the most effective clinical method, surgical stress to the part of the bone being extracted and the quantity of extractable bone limit this method. Recently mesenchymal stem cell-based therapies have the potential to provide an effective treatment of osseous defects. In this paper, we discuss both the current therapy for bone regeneration and the perspectives in the field of stem cell-based regenerative medicine, addressing the sources of stem cells and growth factors used to induce bone regeneration effectively and reproducibly

    Odontoblast differentiation is regulated by an interplay between primary cilia and the canonical Wnt pathway

    Get PDF
    Primary cilium is a protruding cellular organelle that has various physiological functions, especially in sensory reception. While an avalanche of reports on primary cilia have been published, the function of primary cilia in dental cells remains to be investigated. In this study, we focused on the function of primary cilia in dentin-producing odontoblasts. Odontoblasts, like most other cell types, possess primary cilia, which disappear upon the knockdown of intraflagellar transport-88. In cilia-depleted cells, the expression of dentin sialoprotein, an odontoblastic marker, was elevated, while the deposition of minerals was slowed. This was recapitulated by the activation of canonical Wnt pathway, also decreased the ratio of ciliated cells. In dental pulp cells, as they differentiated into odontoblasts, the ratio of ciliated cells was increased, whereas the canonical Wnt signaling activity was repressed. Our results collectively underscore the roles of primary cilia in regulating odontoblastic differentiation through canonical Wnt signaling. This study implies the existence of a feedback loop between primary cilia and the canonical Wnt pathway

    Effects of Ca substitution on the local structure and oxide–ion behavior of layered perovskite lanthanum nickelate

    Get PDF
    La2NiO4+δ-based materials with a layered perovskite structure have attracted significant attention as air–electrode materials for use in solid oxide fuel cells. In particular, Ca-substituted materials, La2-xCaxNiO4+δ, have been investigated, as the partial substitution of La with Ca can improve oxide–ion conduction in crystals. However, the local structures around the conducting oxide ion and Ca dopant are not been well understood because their distributions cannot be characterized by a general structure analysis only using Bragg peaks. Therefore, we examine the atomic structure of La1.75Ca0.25NiO4+δ by a combination of molecular dynamics simulations and a reverse Monte Carlo modeling using the Faber–Ziman structure factor, real-space function, and the Bragg profile simultaneously. The results indicate that conducting oxide ions are introduced into rocksalt layers in the crystal and are present around La but not Ca. Furthermore, it is found that ionic diffusion is accompanied by a change in the rocksalt layer volume, which can be suppressed by the partial substitution with Ca. This can be regarded as a major reason why Ca substitution improves oxide–ion diffusion in the La2NiO4+δ layered perovskite

    Bactericidal Effects of Diode Laser Irradiation on Enterococcus faecalis Using Periapical Lesion Defect Model

    Get PDF
    Objective. Photodynamic therapy has been expanded for use in endodontic treatment. The aim of this study was to investigate the antimicrobial effects of diode laser irradiation on endodontic pathogens in periapical lesions using an in vitro apical lesion model. Study Design. Enterococcus faecalis in 0.5% semisolid agar with a photosensitizer was injected into apical lesion area of in vitro apical lesion model. The direct effects of irradiation with a diode laser as well as heat produced by irradiation on the viability of microorganisms in the lesions were analyzed. Results. The viability of E. faecalis was significantly reduced by the combination of a photosensitizer and laser irradiation. The temperature caused by irradiation rose, however, there were no cytotoxic effects of heat on the viability of E. faecalis. Conclusion. Our results suggest that utilization of a diode laser in combination with a photosensitizer may be useful for clinical treatment of periapical lesions

    カフェイン酸フェネチルエステル(CAPE)がラット象牙芽細胞様細胞のVEGF発現と産生に与える影響

    Get PDF
    Caffeic acid phenethyl ester (CAPE), the main component of propolis, has various biological activities including anti-inflammatory effect and wound healing promotion. Odontoblasts located in the outermost layer of dental pulp play crucial roles such as production of growth factors and formation of hard tissue termed reparative dentin in host defense against dental caries. In this study, we investigated the effects of CAPE on the upregulation of vascular endothelial growth factor (VEGF) and calcification activities of odontoblasts, leading to development of novel therapy for dental pulp inflammation caused by dental caries. CAPE significantly induced mRNA expression and production of VEGF in rat clonal odontoblast-like KN-3 cells cultured in normal medium or osteogenic induction medium. CAPE treatment enhanced nuclear factor-kappa B (NF-κB) transcription factor activation, and furthermore, the specific inhibitor of NF-κB significantly reduced VEGF production. The expression of VEGF receptor- (VEGFR-) 2, not VEGFR-1, was up regulated in KN-3 cells treated with CAPE. In addition, VEGF significantly increased mineralization activity in KN-3 cells. These findings suggest that CAPE might be useful as a novel biological material for the dental pulp conservative therapy

    Influence of New Sleeve Composite on Fracture Behavior of Anterior Teeth with Flared Root Canals

    Get PDF
    We evaluated the fracture strength and failure mode of non-ferrule teeth with flared root canals that were restored using new experimental sleeve composites. Fifty endodontically treated anterior teeth with flared root canals were restored with direct restorations utilizing different techniques. Group A had teeth (non-ferrule) restored using commercialized MI glass fiber post + Gradia Core as core build-up. Group B had teeth (non-ferrule) restored with commercialized i-TFC glass fiber post + sleeve system. In Group C, the teeth (non-ferrule) were restored with an experimental sleeve composite with commercialized MI glass fiber post and Gradia Core. Group D, teeth (non-ferrule), were restored using custom-made tapered E-glass filling post and Gradia Core. Group E, teeth (with ferrule), were restored with commercialized MI glass fiber post + Gradia Core. After core construction, all specimens underwent direct composite crown restoration and were loaded until fracture using a universal testing machine. Average fracture loads were compared, and the failure modes were observed. Group C exhibited significantly greater fracture strength than other groups (p </p

    Successful recovery from a subclavicular ulcer caused by lenvatinib for thyroid cancer: a case report

    Get PDF
    Background: There are currently no effective therapeutic methods for locally recurrent, metastatic, or progressive radioactive iodine (RAI)-refractory differentiated thyroid cancer. However, multitargeted tyrosine kinase inhibitors (TKIs) such as lenvatinib or sorafenib have been approved for patients with RAI-refractory differentiated thyroid cancer as a second targeted therapy, and these agents can prolong patient survival. However, several cases have been reported that TKIs have caused fatal complications such as fistula formation or bleeding. Case presentation: We report a case of a 53-year-old woman, who underwent repeated neck dissections and RAI therapy after total thyroidectomy in an outside hospital. Pathology revealed a papillary carcinoma of the tall cell variant. Locoregional recurrence was not under control; therefore, she visited our hospital. Although surgery was performed for locoregional recurrences three times in our hospital, they were not under control and distant metastases were found in the lung and bone a year later. Therefore, although sorafenib was initiated, the locoregional recurrence progressed 6months later and computed tomography (CT) showed a 7-cm mass in the right subclavicular lesion. Lenvatinib was started at a dose of 24mg daily. However, although tumor was rapidly reduced, an ulcer occurred in the right subclavicular lesion and was gradually increasing in size. The pulsation of subclavicular artery was found in the deep portion of the ulcer. Therefore, a pectoralis major myocutaneous flap was transplanted to cover the ulcer. Lenvatinib was an antiangiogetic TKI; therefore, it was preoperatively discontinued for 8days and postoperatively for 12days. The postoperative course was uneventful. Conclusions: Fistula formation or bleeding is known to be a severe side effect of antiangiogenic TKIs such as lenvatinib or sorafenib. There is a possibility that severe complications can occur when initiating TKIs in patients whose tumor has invaded into the skin, vessels, trachea, esophagus, and other areas. Therefore, it is necessary to use antiangiogenic TKIs very carefully. It is important to determine the appropriate time to start TKIs; however, there is no established protocol for this, and it is a problem that needs urgent attention

    In Vivo Application of Silica-Derived Inks for Bone Tissue Engineering: A 10-Year Systematic Review

    Get PDF
    As the need for efficient, sustainable, customizable, handy and affordable substitute materials for bone repair is critical, this systematic review aimed to assess the use and outcomes of silica-derived inks to promote in vivo bone regeneration. An algorithmic selection of articles was performed following the PRISMA guidelines and PICO method. After the initial selection, 51 articles were included. Silicon in ink formulations was mostly found to be in either the native material, but associated with a secondary role, or to be a crucial additive element used to dope an existing material. The inks and materials presented here were essentially extrusion-based 3D-printed (80%), and, overall, the most investigated animal model was the rabbit (65%) with a femoral defect (51%). Quality (ARRIVE 2.0) and risk of bias (SYRCLE) assessments outlined that although a large majority of ARRIVE items were “reported”, most risks of bias were left “unclear” due to a lack of precise information. Almost all studies, despite a broad range of strategies and formulations, reported their silica-derived material to improve bone regeneration. The rising number of publications over the past few years highlights Si as a leverage element for bone tissue engineering to closely consider in the future
    corecore