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Abstract—Observation of the oral cavity microstructure is an important factor for a successful 

dental treatment. None of the many currently available diagnostic equipment can accurately 

observe the microstructure. In this study, we have designed an endoscope with a single graded-index 

multimode fiber of 600-µm diameter that can reach the narrow spaces in the oral cavity and can 

perform both image acquisition and sample illumination using a prism beam splitter, unlike the 

conventional endoscope using separate fibers. Thus, the side branch of the teeth and the 

subgingival calculus can be accurately observed with a resolution of up to 10 μm. 
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I. INTRODUCTION 

In dental practice, accurate diagnosis and delicate treatment of the defects in the narrow root 

canals of the oral cavity are required. Root canal therapy is particularly one of the complicated 

dental treatments because of the difficulty in direct observation. It is a surgical procedure used 

when the tooth decay has progressed to the dental pulp including the nerves. First, the dental 

caries should be removed and the root canal accommodating the dental pulp should be exposed. 

Second, the dental pulp is removed by using a file and a reamer. However, the root canals 

exhibit a complicated morphology [1], [2]. The root canals comprise a group of complicated 

structures called collaterals, which branch near the apex. The diagnosis of the collaterals by 

observing from the orifice of the root canals is very difficult. The pain induced by the removal 

of the remnants of the dental pulp cannot be reduced; instead, it increases. As a result, it is 

currently impossible to clearly perform a chairside observation of the collaterals of the root 

canals in real time. The mandibular molars are shown in Figure1. 

 

Figure 1. Cross-section of human mandibular molars 

 

Human tooth is mainly composed of three layers of hard tissue: the cementum, dentin, and 

enamel, as well as the pulp. The nerves and blood vessels in the pulp are located inside the root 

canal, from the exterior to the interior of the tooth, which are additionally involved in the 

sensation of the tooth. The teeth are surrounded by the gingival, alveolar bone, and periodontal 

ligament. The tooth structure is not simple, and the root canal exhibits different aspects, which 

branches inside the tooth. Currently, many dental treatments rely on the experience and 

intuition of the dentists because it is impossible to directly observe the lesions inside the dark 
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and narrow root canals. However, the diagnostic accuracy has currently been improved by 

using a microscope or cone-beam Computed Tomography (CBCT) as shown by Figures 2 and 

3 [3-17]. 

 

Figure 2. Picture of microscope used for dental treatment 

 

 

Figure 3. Picture of CBCT device 

 

A microscope can diagnose the microcracks in the tooth and abnormalities such as 

microdamage and can provide a magnification of up to 20 times for the restoration from 

outside the oral cavity in the real time. Thus, it is possible to perform a more accurate 

treatment. However, if the root canal is curved, we cannot observe the root apex. A CBCT with 

a voxel size of up to 80 μm can be used for the observation of the tooth interior, and it enables 
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a noninvasive diagnosis. However, it cannot perform real-time observation because of some 

exposure issues. In this study, our objective is to develop a novel diagnostic device with a high 

resolution to observe the fine structures inside the tooth, particularly, the periapical tissues and 

periodontal pockets. It is inexpensive and comprises a simple design. We use an image fiber 

with a diameter of 600 μm, 15000 pixels, and resolution of approximately 6 μm. We design the 

device in such a manner that it enables to both obtain a clear image and illuminate the sample 

with light using a graded-index (GRIN) fiber. As a result, we can obtain an image of the tooth 

interior, even though it is narrow and dark. We use a GRIN fiber (FIGH-15-480S, 15000 pixels, 

diameter of 600 μm) that is inserted in a CMOS sensor, an objective lens, a prism beam splitter 

(PBS), and an optical fiber, all arranged in a straight line. At the PBS, we arrange the optical 

fiber at right angle, and the PBS is illuminated. Half the amount of light incident on the PBS is 

reflected toward the GRIN fiber and illuminates the sample through the fiber. Oil stagnates 

between the PBS and the image fiber because of the reflection at the interface. The tip of the 

fiber contacts the sample. Further, we suppress the reflection and scattering of light in the 

system by placing a mask of 2.5 mm at the center of the light source lens and eliminate the 

halation that appears on the image by image processing. It is possible to simultaneously obtain 

a clear image and illuminate the sample with light through the image fiber with this device. 

The quality of this image is almost same as that of the image obtained with an external 

illumination. The resolution is approximately 10 μm. This value is sufficient to diagnose the 

cracks and collaterals of the root canals. These results suggest that this device has the potential 

for obtaining vivid images of the fine structures in the root canal.  
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II. MATERIAL AND METHODS 

The system schematic is shown in Figure 3.  

 

Figure 3. System schematic 

 

This system consists of a microscope with a CMOS image sensor, a PBS, an optical fiber 

connected to an LED as the light source, a double-convex spherical lens to converge the light 

beams emanating from the optical fiber, and a GRIN image fiber.  

The GRIN image fiber is fabricated by Fujikura Corp. It consists of 15000 parallel cores 

(pixels) located within the same silica jacket. The fiber diameter and image circle diameter are 

480 μm and 450 μm, respectively, and the outer coating diameter is approximately 570 μm. 

The minimum bending radius is 50 mm. The cross-section of the fiber is illustrated in Figure 4. 

 

Figure 4. Cross-section of GRIN image fiber (SEM images) 

 

 The material of the fiber core is GeO2-SiO2, and the clad is composed of F-SiO2. The fiber is 

coated with a silicone resin. The fiber with this diameter is small enough to be inserted into the 

root canal of the tooth for lesion observation. As shown in Figure 5, the apex of the root canal 
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is approximately 100 μm in diameter, which is the narrowest part. The diameter increases from 

the apex to the upper part of the root canal, forming a conical shape. The widest area is not less 

than 1 mm in diameter.  

 

Figure 5. Cross-section of root canals and its observation using our diagnostic device; 

diameter of apex and collaterals of root canals is 100 μm. 

 

We have employed an LED light source in our system, which has been widely used in a variety 

of medical equipment including the dental diagnostic and treatment devices. The illumination 

by the LED light source is harmless to the human body and very effective [18-21]. Table 1 lists 

the LED specifications, and Figure 6 shows the relationship between the measured wavelength 

and intensity of the LED. This figure shows a peak at 450 nm. 

 

Table 1: Specifications of LED  

Type Size Deg Color Lens Voltage Intensity 

OSW4XME3C1S 19.9 mm 120 Pure white Yellow diffused 3.3 V 200 lm 
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Figure 6. Relationship between wavelength and intensity of LED 

 

As shown in Figure 7, the LED light source is connected to one end of the optical fiber. The 

light intensity of the LED source can be adjusted by using a pulse width modulation (PWM) 

circuit as shown in Figure 8.  

 

 

 

 

Figure 7. LED light source is connected to one end of optical fiber. Photograph of the LED 

light source when the light is turned on. The light emanating from the LED enters one end of 

the fiber and is output from the other end. 
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Figure 8. Circuit of light source. The light intensity of the LED source can be adjusted by using 

a pulse width modulation (PWM) circuit. 

 

As shown in Figure 9, when we place a mask at the center of the condensing lens, a ring-

shaped light emanates and the reflected light is not transferred to the surface of the image-

obtaining plane of the objective lens, which is irradiated with the ring-shaped light. Figure 10 

shows the relationship between the image-obtaining plane of the objective lens and the mask 

on the condensing lens, which is expressed in equations (1) and (2), and Figure 11 shows the 

relationship between the intensity of the reflected light and the light-shielding mask diameter. 

dA is the aperture size, d’M is the diameter of the shadow formed by the mask, dM is the mask 

diameter, and EV is the amount of light flux per unit area of the reflected light. 

 

 2 21

4
A M VI d d E                                           (1) 

M Md d                                                                      (2) 
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Figure 9. Conceptual schematic of the shadow mask. We purpose to reduce the center of light 

to reflections by masking the condensing lens 

 

 

 

 

Figure 10. Relationship between mask and shadow of objective lens surface. We calculate the 

diameter of the ideal mask on the basis of this relationship. The ideal mask diameter is 2.424 

mm. 
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Figure 11. Relationship between intensity of reflected light and light-shielding mask diameter 

 

 

 

The light is not reflected on the PBS surface by using a mask of 2.4 mm. At this point, the 

irradiation light intensity is 90.4%, as shown in Figure 12. 

 

 

Figure 12. Relationship between intensity of irradiation light and light-shielding mask 

diameter. Irradiation light intensity is 90.4%. 

 

 

We have employed a polarized PBS in our diagnostic system. The light reaching the PBS 

surface is orthogonally polarized. The s-polarized beam (whose polarization is perpendicular to 

the plane of incidence) is reflected on the GRIN image fiber and the p-polarized beam (whose 

polarization is in the plane of incidence) passes through the fiber. The light transmitted from 
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the image fiber further illuminates the sample patterns to be observed. Glycerin is filled 

between the PBS and one tip of the image fiber and between the other tip of the image fiber 

and the sample in order to suppress the reflection at their surfaces. The sample patterns are 

fabricated using the focused ion beam (FIB) technique. Four line and space widths are 

fabricated on the surface of the sample, namely, 10 μm, 20 μm, 50 μm, and 100 μm, which are 

shown in Figure13. A clear image of the sample patterns can be obtained by direct contact of 

the sample surface with the GRIN image fiber tip. The CMOS microscope used in our system 

performs real-time image observation and capture. Its design is quite simple, and it is available 

at a very low price. It consists of only two objective lenses, which are separated at a fixed 

distance. The magnification can be adjusted from 10X to 1000X. A USB cable is connected to 

a computer, and the observed image is displayed on the computer screen in real time.  

 

 

 

Figure 13. Sample patterns with four different line and space widths: 10 μm (top left), 20 μm 

(top right), 50 μm (lower right) and 100 μm (lower left) 

 

 

 

The aforementioned reflection on the PBS surface manifests as a halation around the center 

and four corners of the observed sample image. In addition to filling up with glycerin and 

using light-shielding mask on the double convex lens surface, the halation can be further 

suppressed by image processing. This is realized by image subtraction between the two 

captured images: one image is captured without the GRIN image fiber and sample patterns 

such that the captured image only includes the halation due to the reflection on the PBS surface 

(see Figure15 (b) in Section III). The other one is the captured image of the sample pattern 

using the GRIN image fiber (see, Figure15 (a) in Section III).  
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III. RESULTS AND DISCUSSION 

In this section, we investigate the performance of the diagnostic system by real-time 

observation and capture of the images of the sample patterns. The fabricated sample patterns 

are shown in Figure 12. The numbers on the patterns indicate the different line and space 

widths in micrometer. The GRIN image fiber tip directly contacts the sample surface during 

observation. Our objective is to observe the patterns without the help of an external 

illumination on the sample surface. The sample is illuminated simply by the GRIN image fiber, 

where the light is transmitted from the LED source (we call it internal illumination). Further, 

the images of the patterns are transmitted back to the other side of the image fiber and finally 

reach the CMOS image sensor of the microscope. For evaluating the captured image quality 

under the condition of internal illumination, we compare the image obtaining using an internal 

illumination with that obtained using an external light source for illuminating the surface of the 

sample. Figure 14 shows the real-time observed and captured images of the four different 

patterns: 10 μm, 20 μm, 50 μm, and 100 μm line, as well as space. The upper four images 

shown in Figure 14 were captured when a halogen lamp externally irradiated the surface of the 

sample. The lower four images were captured using an internal illumination. It can be directly 

observed from Figure 14 that the contrast of the captured image using an internal illumination 

equals to that using an external illumination, except that the halation around the center and 

corners of the lower four images slightly reduces the contrast. In addition, several blots can be 

observed in Figures 14 (f) and (h) owing to direct contact of the sample surface with the image 

fiber. We have quantified the contrast by the following equations: 
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Figure 14. Captured images of four sample patterns using external and internal illuminations. 

(a), (b), (c), and (d) are captured images of 10-μm, 20-μm, 50-μm, and 100-μm line and space 

widths using external illumination. (e), (f), (g), and (h) are captured images of 10-μm, 20-μm, 

50-μm, and 100-μm line and space widths using internal illumination. 

 

max min

max min

I I
Ci

I I





                        (3) 

1

/
n

i

C Ci n


 
  
 
                           (4) 

 

where Ci is the contrast value of the ith region of the captured image and C is the overall 

contrast of the entire image, which is obtained by arithmetic mean of the contrasts of n 

different regions. Imax and Imin denote the maximum and minimum intensities in the ith region, 

respectively. The higher the value of C, the easier it is to distinguish a line from a space. We 

have computed the contrast values for 10-μm and 20-μm line and space widths using external 

and internal illuminations. Five regions are selected for contrast computation: upper left, upper 

right, lower left, lower right, and central regions. We have neglected the image boundaries and 

pixel vacancies, which result in incorrect contrast values. The results are summarized in Table 

2. 
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Table 2: Contrast comparison for 10-μm and 20-μm line and space widths using external and 

internal illuminations. 

Line and Space Width External Internal 

10 μm 0.4362 0.5669 

20 μm 0.6824 0.5944 

 

The results summarized in Table 2 demonstrate that the contrast difference between the 

external and the internal illumination is smaller than 0.13 in the case of 10-μm and 20-μm line 

and space widths, which suggests that the captured images using an internal illumination have 

an image contrast similar to that of the images using an external illumination. However, the 

halation is visible around the center and corners of the captured image in the case of internal 

illumination because of the reflection on the PBS surface and fiber tips. We have used an 

image subtraction algorithm described in Section II B to further suppress the halation. The 

results are shown in Figure 15. Figure 15 (a) shows the captured image of the sample pattern 

using the GRIN image fiber. The halation is clearly visible around the center and corners of 

the image. Figure 15 (b) shows the captured image without the GRIN image fiber and sample 

patterns, which includes only the halation. By subtracting (b) from (a), we obtain (c), in which 

the halation is suppressed.  

 

Figure 15. Halation suppression by image subtraction. (a) Captured image of the sample 

pattern of 20-μm line and space width using the GRIN image fiber (b) Captured image 

without the GRIN image fiber and sample. (c) Resultant image without halation. 
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 Thus far, we have shown that the sample patterns up to 10-μm line and space widths can be 

clearly observed using a single image fiber for both illumination and image transmission. 

However, the real-time dental diagnosis and treatment require an optical system with a higher 

capability to distinguish the lesions from the normal tissues. The next stage of our research is 

to improve the captured image quality and observe the in vivo fine tissues inside the root 

canals of the human teeth. In addition, the current system using an internal illumination 

cannot observe an object if the distance between the GRIN image fiber and the object is not 

zero. The object distance can be increases by attaching a GRIN lens to the image fiber tip. 

Our image fiber is capable of observing the tissues near the fiber by directly contacting the 

tissues; however, it cannot reach the apex of the root canals where the diameter is 

approximately 100 μm because the fiber’s outer diameter is 570 μm. Therefore, an increase in 

the distance between the object and the image fiber is necessary in order to observe the deep 

tissues.  

 

IV. CONCLUSION 

In this paper, we have proposed a low-cost dental diagnostic system that can carry out real-

time observation of the interior of the narrow root canals of the tooth. This system uses a 

single GRIN image fiber for both sample illumination and image transmission, and it 

successfully captures the images of the sample patterns of up to 10-μm line and space widths 

with an acceptable contrast. Our system has the advantage of simultaneously illuminating 

and obtaining a clear image of the observed tissue through a single image fiber, and the 

probe diameter of this endoscope is small enough to be fitted into the root canals of the oral 

cavity for observation. The current system can only observe an object when the object 

distance from the image fiber is zero. An increase in the object distance, which can be 

realized by attaching a GRIN lens to the tip of the image fiber on one side of the sample, will 

be dealt with in our future work.  
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