1,136 research outputs found

    An X-Ray Dip in the X-Ray Transient 4U 1630-47

    Full text link
    An x-ray dip was observed during a 1996 Rossi X-Ray Timing Explorer observation of the recurrent x-ray transient 4U 1630-47. During the dip, the 2-60 keV x-ray flux drops by a factor of about three, and, at the lowest point of the dip, the x-ray spectrum is considerably softer than at non-dip times. We find that the 4U 1630-47 dip is best explained by absorption of the inner part of an accretion disk, while the outer part of the disk is unaffected. The spectral evolution during the dip is adequately described by the variation of a single parameter, the column density obscuring the inner disk.Comment: 13 pages, 4 figures, Accepted for publication in Ap

    Magnetic anisotropy switching in (Ga,Mn)As with increasing hole concentration

    Full text link
    We study a possible mechanism of the switching of the magnetic easy axis as a function of hole concentration in (Ga,Mn)As epilayers. In-plane uniaxial magnetic anisotropy along [110] is found to exceed intrinsic cubic magnetocrystalline anisotropy above a hole concentration of p = 1.5 * 10^21 cm^-3 at 4 K. This anisotropy switching can also be realized by post-growth annealing, and the temperature-dependent ac susceptibility is significantly changed with increasing annealing time. On the basis of our recent scenario [Phys. Rev. Lett. 94, 147203 (2005); Phys. Rev. B 73, 155204 (2006).], we deduce that the growth of highly hole-concentrated cluster regions with [110] uniaxial anisotropy is likely the predominant cause of the enhancement in [110] uniaxial anisotropy at the high hole concentration regime. We can clearly rule out anisotropic lattice strain as a possible origin of the switching of the magnetic anisotropy.Comment: 5 pages, 4 figures, to appear in Phys. Rev.

    A Method of Mass Measurement in Black Hole Binaries Using Timing and High Resolution X-ray Spectroscopy

    Get PDF
    In X-ray binaries, several percent of the compact object luminosity is intercepted by the surface of the normal companion and re-radiated through Compton reflection and the K-fluorescence. This reflected emission follows the variability of the compact object with a delay approximately equal to the orbital radius divided by the speed of light. This provides the possibility of measuring the orbital radius and thus substantially refining the compact object mass determination compared to using optical data alone. We demonstrate that it may be feasible to measure the time delay between the direct and reflected emission using cross-correlation of the light curves observed near the Kalpha line and above the K-edge of neutral iron. In the case of Cyg X-1, the time delay measurement is feasible with a 300--1000 ksec observation by a telescope with a 1000 cm^2 effective area near 6.4 keV and with a ~5eV energy resolution. With longer exposures, it may be possible to obtain mass constraints even if an X-ray source in the binary system lacks an optical counterpart.Comment: ApJ Letters, in press. 4 pages, 3 figures, uses emulateapj.st

    Infra-red effects of Non-linear sigma model in de Sitter space

    Full text link
    We extend our investigation on a possible de Sitter symmetry breaking mechanism in non-linear sigma models. The scale invariance of the quantum fluctuations could make the cosmological constant time dependent signaling the de Sitter symmetry breaking. To understand such a symmetry breaking mechanism, we investigate the energy-momentum tensor. We show that the leading infra-red logarithms cancel to all orders in perturbation theory in a generic non-linear sigma model. When the target space is an N sphere, the de Sitter symmetry is preserved in the large N limit. For a less symmetric target space, the infra-red logarithms appear at the three loop level. However there is a counter term to precisely cancel it. The leading infra-red logarithms do not cancel for higher derivative interactions. We investigate such a model in which the infra-red logarithms first appear at the three loop level. A nonperturbative investigation in the large N limit shows that they eventually grow as large as the one loop effect.Comment: 39page

    Dynamic relaxation of magnetic clusters in a ferromagnetic (Ga,Mn)As epilayer

    Full text link
    A new scenario of the mechanism of intriguing ferromagnetic properties in Mn-doped magnetic semiconductor (Ga,Mn)As is examined in detail. We find that magnetic features seen in zero-field cooled and field cooled magnetizations are not interpreted with a single domain model [Phys. Rev. Lett. 95, 217204 (2005)], and the magnetic relaxation, which is similar to that seen in magnetic particles and granular systems, is becoming significant at temperatures above the lower-temperature peak in the temperature dependence of ac susceptibility, supporting the cluster/matrix model reported in our previous work [Phys. Rev. Lett. 94, 147203 (2005)]. Cole-Cole analysis reveals that magnetic interactions between such (Ga,Mn)As clusters are significant at temperatures below the higher-temperature peak in the temperature dependent ac susceptibility. The magnetizations of these films disappear above the temperature showing the higher-temperature peak, which is generally referred to as the Curie temperature. However, we suggest that these combined results are evidence that the temperature is actually the blocking temperature of (Ga,Mn)As clusters with a relatively high hole concentration compared to the (Ga,Mn)As matrix.Comment: 8 pages, 7 figures, to appear in Phys. Rev.

    High Resolution Spectroscopy of the X-ray Photoionized Wind in Cygnus X-3 with the Chandra High Energy Transmission Grating Spectrometer

    Full text link
    We present a preliminary analysis of the 1--10 keV spectrum of the massive X-ray binary Cyg X-3, obtained with the High Energy Transmission Grating Spectrometer on the Chandra X-ray Observatory. The source reveals a richly detailed discrete emission spectrum, with clear signatures of photoionization-driven excitation. Among the spectroscopic novelties in the data are the first astrophysical detections of a number of He-like 'triplets' (Si, S, Ar) with emission line ratios characteristic of photoionization equilibrium, fully resolved narrow radiative recombination continua of Mg, Si, and S, the presence of the H-like Fe Balmer series, and a clear detection of a ~ 800 km/s large scale velocity field, as well as a ~1500 km/s FWHM Doppler broadening in the source. We briefly touch on the implications of these findings for the structure of the Wolf-Rayet wind.Comment: 11 pages, 3 figures; Accepted for publication in ApJ Letter

    New Measurements of Orbital Period Change in Cygnus X-3

    Get PDF
    A nonlinear nature of the binary ephemeris of Cygnus X-3 indicates either a change in the orbital period or an apsidal motion of the orbit. We have made extended observations of Cygnus X-3 with the Pointed Proportional Counters (PPCs) of the Indian X-ray Astronomy Experiment (IXAE) during 1999 July 3-13 and October 11-14. Using the data from these observations and the archival data from ROSAT, ASCA, BeppoSAX and RXTE, we have extended the data base for this source. Adding these new arrival time measurements to the published results, we make a comparison between the various possibilities, (a) orbital decay due to mass loss from the system, (b) mass transfer between the stars, and (c) apsidal motion of the orbit due to gravitational interaction between the two components. Orbital decay due to mass loss from the companion star seems to be the most probable scenario.Comment: 7 pages, 4 figures, accepted for publication in A&

    Evidence for Doppler-Shifted Iron Emission Lines in Black Hole Candidate 4U 1630-47

    Get PDF
    We report the first detection of a pair of correlated emission lines in the X-ray spectrum of black hole candidate 4U 1630-47 during its 1996 outburst, based on RXTE observations of the source. At the peak plateau of the outburst, the emission lines are detected, centered mostly at \sim5.7 keV and \sim7.7 keV, respectively, while the line energies exhibit random variability \sim5%. Interestingly, the lines move in a concerted manner to keep their separation roughly constant. The lines also vary greatly in strength, but with the lower-energy line always much stronger than the higher-energy one. The measured equivalent width ranges from \sim50 eV to \sim270 eV for the former, and from insignificant detection to \sim140 eV for the latter; the two are reasonably correlated. The correlation between the lines implies a causal connection --- perhaps they share a common origin. Both lines may arise from a single KαK_{\alpha} line of highly ionized iron that is Doppler-shifted either in a Keplerian accretion disk or in a bi-polar outflow or even both. In both scenarios, a change in the line energy might simply reflect a change in the ionization state of line-emitting matter. We discuss the implication of the results and also raise some questions about such interpretations.Comment: To appear in Ap

    Inclination Effects and Beaming in Black Hole X-ray Binaries

    Full text link
    We investigate the dependence of observational properties of black hole X-ray binaries on the inclination angle i of their orbits. We find the following: (1) Transient black hole binaries show no trend in their quiescent X-ray luminosities as a function of i, suggesting that the radiation is not significantly beamed. This is consistent with emission from an accretion disk. If the X-rays are from a jet, then the Lorentz factor gamma of the jet is less than 1.24 at the 90% confidence level. (2) The X-ray binary 4U1543-47 with i of order 21 degrees has a surprisingly strong fluorescent iron line in the high soft state. Quantifying an earlier argument by Park et al. (2004), we conclude that if the continuum X-ray emission in this source is from a jet, then gamma < 1.04. (3) None of the known binaries has cos i 75 degrees. This fact, plus the lack of eclipses among the 20 black hole binaries in our sample, strongly suggests at the 99.5% confidence level that systems with large inclination angles are hidden from view. The obscuration could be the result of disk flaring, as suggested by Milgrom (1978) for neutron star X-ray binaries. (4) Transient black hole binaries with i ~ 70-75 degrees have significantly more complex X-ray light curves than systems with i < 65 degrees. This may be the result of variable obscuration and/or variable height above the disk of the radiating gas.Comment: 26 pages, to appear in The Astrophysical Journal, vol. 624, May 1, 200
    corecore