659 research outputs found

    Proposed experiments to probe the non-abelian \nu=5/2 quantum Hall state

    Full text link
    We propose several experiments to test the non-abelian nature of quasi-particles in the fractional quantum Hall state of \nu=5/2. One set of experiments studies interference contribution to back-scattering of current, and is a simplified version of an experiment suggested recently. Another set looks at thermodynamic properties of a closed system. Both experiments are only weakly sensitive to disorder-induced distribution of localized quasi-particles.Comment: Additional references and an improved figure, 5 page

    Connection Formulae for Asymptotics of Solutions of the Degenerate Third Painlev\'{e} Equation. I

    Full text link
    The degenerate third Painlev\'{e} equation, u′′=(u′)2u−u′τ+1τ(−8ϵu2+2ab)+b2uu^{\prime \prime} = \frac{(u^{\prime})^{2}}{u} - \frac{u^{\prime}}{\tau} + \frac{1}{\tau}(-8 \epsilon u^{2} + 2ab) + \frac{b^{2}}{u}, where ϵ,b∈R\epsilon,b \in \mathbb{R}, and a∈Ca \in \mathbb{C}, and the associated tau-function are studied via the Isomonodromy Deformation Method. Connection formulae for asymptotics of the general as τ→±0\tau \to \pm 0 and ±i0\pm i0 solution and general regular as τ→±∞\tau \to \pm \infty and ±i∞\pm i \infty solution are obtained.Comment: 40 pages, LaTeX2

    Quantum simulators, continuous-time automata, and translationally invariant systems

    Full text link
    The general problem of finding the ground state energy of lattice Hamiltonians is known to be very hard, even for a quantum computer. We show here that this is the case even for translationally invariant systems. We also show that a quantum computer can be built in a 1D chain with a fixed, translationally invariant Hamitonian consisting of nearest--neighbor interactions only. The result of the computation is obtained after a prescribed time with high probability.Comment: partily rewritten and important references include

    Entanglement purification for Quantum Computation

    Get PDF
    We show that thresholds for fault-tolerant quantum computation are solely determined by the quality of single-system operations if one allows for d-dimensional systems with 8≤d≤328 \leq d \leq 32. Each system serves to store one logical qubit and additional auxiliary dimensions are used to create and purify entanglement between systems. Physical, possibly probabilistic two-system operations with error rates up to 2/3 are still tolerable to realize deterministic high quality two-qubit gates on the logical qubits. The achievable error rate is of the same order of magnitude as of the single-system operations. We investigate possible implementations of our scheme for several physical set-ups.Comment: 4 pages, 1 figure; V2: references adde

    An Isomonodromy Cluster of Two Regular Singularities

    Full text link
    We consider a linear 2×22\times2 matrix ODE with two coalescing regular singularities. This coalescence is restricted with an isomonodromy condition with respect to the distance between the merging singularities in a way consistent with the ODE. In particular, a zero-distance limit for the ODE exists. The monodromy group of the limiting ODE is calculated in terms of the original one. This coalescing process generates a limit for the corresponding nonlinear systems of isomonodromy deformations. In our main example the latter limit reads as P6→P5P_6\to P_5, where PnP_n is the nn-th Painlev\'e equation. We also discuss some general problems which arise while studying the above-mentioned limits for the Painlev\'e equations.Comment: 44 pages, 8 figure

    Exploring Contractor Renormalization: Tests on the 2-D Heisenberg Antiferromagnet and Some New Perspectives

    Full text link
    Contractor Renormalization (CORE) is a numerical renormalization method for Hamiltonian systems that has found applications in particle and condensed matter physics. There have been few studies, however, on further understanding of what exactly it does and its convergence properties. The current work has two main objectives. First, we wish to investigate the convergence of the cluster expansion for a two-dimensional Heisenberg Antiferromagnet(HAF). This is important because the linked cluster expansion used to evaluate this formula non-perturbatively is not controlled by a small parameter. Here we present a study of three different blocking schemes which reveals some surprises and in particular, leads us to suggest a scheme for defining successive terms in the cluster expansion. Our second goal is to present some new perspectives on CORE in light of recent developments to make it accessible to more researchers, including those in Quantum Information Science. We make some comparison to entanglement-based approaches and discuss how it may be possible to improve or generalize the method.Comment: Completely revised version accepted by Phy Rev B; 13 pages with added material on entropy in COR

    Detecting Non-Abelian Statistics in the nu=5/2 Fractional Quantum Hall State

    Get PDF
    In this letter we propose an interferometric experiment to detect non-Abelian quasiparticle statistics -- one of the hallmark characteristics of the Moore-Read state expected to describe the observed FQHE plateau at nu=5/2. The implications for using this state for constructing a topologically protected qubit as has been recently proposed by Das Sarma et. al. are also addressed.Comment: 5 pages, 2 eps figures v2: A few minor changes and citation corrections. In particular, the connection to cond-mat/9711087 has been clarified. v3: Minor changes: fixed references to Fig. 2, updated citations, changed a few words to conform to the version published in PR

    Topological entropy of realistic quantum Hall wave functions

    Full text link
    The entanglement entropy of the incompressible states of a realistic quantum Hall system are studied by direct diagonalization. The subdominant term to the area law, the topological entanglement entropy, which is believed to carry information about topologic order in the ground state, was extracted for filling factors 1/3, 1/5 and 5/2. The results for 1/3 and 1/5 are consistent with the topological entanglement entropy for the Laughlin wave function. The 5/2 state exhibits a topological entanglement entropy consistent with the Moore-Read wave function.Comment: 6 pages, 6 figures; improved computations and graphics; added reference

    Simple proof of equivalence between adiabatic quantum computation and the circuit model

    Get PDF
    We prove the equivalence between adiabatic quantum computation and quantum computation in the circuit model. An explicit adiabatic computation procedure is given that generates a ground state from which the answer can be extracted. The amount of time needed is evaluated by computing the gap. We show that the procedure is computationally efficient.Comment: 5 pages, 2 figures. v2: improved gap estimates and added some more detail
    • …
    corecore