64 research outputs found

    Acetylcholine beyond bronchoconstriction:Roles in inflammation and remodeling

    Get PDF
    Acetylcholine is the primary parasympathetic neurotrans. mitter in the airways, where it not only induces bronchoconstriction and mucus secretion, but also regulates airway inflammation and remodeling. In this review, we propose that these effects are all primarily mediated via the muscarinic M-3 receptor. Acetylcholine promotes inflammation and remodeling via direct effects on airway cells, and via mechanical stress applied to the airways sequential to bronchoconstriction. The effects on inflammation and remodeling are regulated by both neuronal and non-neuronal acetylcholine. Taken together, we believe that the combined effects of anticholinergic therapy on M-3-mediated bronchoconstriction, mucus secretion, inflammation, and remodeling may account for the positive outcome of treatment with these drugs for patients with chronic pulmonary obstructive disease (COPD) or asthma.</p

    Rho-Kinase 1/2 Inhibition Prevents Transforming Growth Factor-β-Induced Effects on Pulmonary Remodeling and Repair

    Get PDF
    Transforming growth factor (TGF)-β-induced myofibroblast transformation and alterations in mesenchymal-epithelial interactions contribute to chronic lung diseases such as chronic obstructive pulmonary disease (COPD), asthma and pulmonary fibrosis. Rho-associated coiled-coil-forming protein kinase (ROCK) consists as two isoforms, ROCK1 and ROCK2, and both are playing critical roles in many cellular responses to injury. In this study, we aimed to elucidate the differential role of ROCK isoforms on TGF-β signaling in lung fibrosis and repair. For this purpose, we tested the effect of a non-selective ROCK 1 and 2 inhibitor (compound 31) and a selective ROCK2 inhibitor (compound A11) in inhibiting TGF-β-induced remodeling in lung fibroblasts and slices; and dysfunctional epithelial-progenitor interactions in lung organoids. Here, we demonstrated that the inhibition of ROCK1/2 with compound 31 represses TGF-β-driven actin remodeling as well as extracellular matrix deposition in lung fibroblasts and PCLS, whereas selective ROCK2 inhibition with compound A11 did not. Furthermore, the TGF-β induced inhibition of organoid formation was functionally restored in a concentration-dependent manner by both dual ROCK 1 and 2 inhibition and selective ROCK2 inhibition. We conclude that dual pharmacological inhibition of ROCK 1 and 2 counteracts TGF-β induced effects on remodeling and alveolar epithelial progenitor function, suggesting this to be a promising therapeutic approach for respiratory diseases associated with fibrosis and defective lung repair

    Second M-3 muscarinic receptor binding site contributes to bronchoprotection by tiotropium

    Get PDF
    Background and Purpose The bronchodilator tiotropium binds not only to its main binding site on the M-3 muscarinic receptor but also to an allosteric site. Here, we have investigated the functional relevance of this allosteric binding and the potential contribution of this behaviour to interactions with long-acting beta-adrenoceptor agonists, as combination therapy with anticholinergic agents and beta-adrenoceptor agonists improves lung function in chronic obstructive pulmonary disease. Experimental Approach ACh, tiotropium, and atropine binding to M-3 receptors were modelled using molecular dynamics simulations. Contractions of bovine and human tracheal smooth muscle strips were studied. Key Results Molecular dynamics simulation revealed extracellular vestibule binding of tiotropium, and not atropine, to M-3 receptors as a secondary low affinity binding site, preventing ACh entry into the orthosteric binding pocket. This resulted in a low (allosteric binding) and high (orthosteric binding) functional affinity of tiotropium in protecting against methacholine-induced contractions of airway smooth muscle, which was not observed for atropine and glycopyrrolate. Moreover, antagonism by tiotropium was insurmountable in nature. This behaviour facilitated functional interactions of tiotropium with the beta-agonist olodaterol, which synergistically enhanced bronchoprotective effects of tiotropium. This was not seen for glycopyrrolate and olodaterol or indacaterol but was mimicked by the interaction of tiotropium and forskolin, indicating no direct beta-adrenoceptor-M-3 receptor crosstalk in this effect. Conclusions and Implications We propose that tiotropium has two binding sites at the M-3 receptor that prevent ACh action, which, together with slow dissociation kinetics, may contribute to insurmountable antagonism and enhanced functional interactions with beta-adrenoceptor agonists

    Withdrawal The novel TRPA1 antagonist BI01305834 inhibits ovalbumin-induced bronchoconstriction in guinea pigs

    Get PDF
    The above article from the British Journal of Pharmacology, published online on May 20, 2020 in Wiley Online Library (http://wileyonlinelibrary.com) has been withdrawn due to a lack of full disclosure of the chemical structure of the novel TRPA1 antagonist BI01305834, by agreement between the Editor-in-Chief and John Wiley & Sons Inc on behalf of The British Pharmacology Society
    • …
    corecore