12 research outputs found

    Exhaled nitric oxide during infancy as a risk factor for asthma and airway hyperreactivity

    Get PDF
    Childhood asthma is often characterised by elevated exhaled nitric oxide (eNO), decreased lung function, increased airway reactivity and atopy; however, our understanding of when these phenotypic airway characteristics develop remains unclear. This study evaluated whether eNO, lung function, airway reactivity and immune characteristics during infancy are risk factors of asthma at age 5 years. Infants with eczema, enrolled prior to wheezy illness (n=116), had eNO, spirometry, airway reactivity and allergen sensitisation assessed at entry to the study and repeated at age 5 years (n=90). Increasing eNO at entry was associated with an increased risk of asthma (p=0.037) and increasing airway reactivity (p=0.015) at age 5 years. Children with asthma at 5 years of age had a greater increase in eNO between infancy and age 5 years compared with those without asthma (p=0.002). Egg sensitisation at entry was also associated with an increased risk of asthma (p=0.020), increasing eNO (p = 0.002) and lower forced expiratory flows (p=0.029) as a 5 year-old. Our findings suggest that, among infants at high risk for developing asthma, eNO early in life may provide important insights into the subsequent risk of asthma and its airway characteristics

    Membrane and Capillary Components of Lung Diffusion in Infants with Bronchopulmonary Dysplasia

    No full text
    RATIONALE: Autopsied lungs of infants with bronchopulmonary dysplasia (BPD) demonstrate impaired alveolar development with larger and fewer alveoli, which is consistent with our previous physiologic findings of lower pulmonary diffusing capacity of the lung for carbon monoxide (DL(CO)) in infants and toddlers with BPD compared with healthy controls born at full term (FT). However, it is not known whether the decreased DL(CO) in infants with BPD results from a reduction in both components of DL(CO): pulmonary membrane diffusing capacity (D(M)) and Vc. OBJECTIVES: We hypothesized that impairment of alveolar development in BPD results in a decrease in both D(M) and Vc components of DlCO but that the D(M)/Vc ratio would not differ between the BPD and FT groups. METHODS: DL(CO) was measured under conditions of room air and high inspired oxygen (90%), which enabled D(M) and Vc to be calculated. MEASUREMENTS AND MAIN RESULTS: D(M) and Vc increased with increasing body length; however, infants with BPD had significantly lower D(M) and Vc than FT subjects after adjustment for race, sex, body length, and corrected age. In contrast to D(M) and Vc, the D(M)/Vc ratio remained constant with increasing body length and did not differ for infants with BPD and FT subjects. CONCLUSIONS: Our findings are consistent with infants with BPD having impaired alveolar development with fewer but larger alveoli, as well as a reduced Vc
    corecore