248 research outputs found

    Spin-filter effect of the europium chalcogenides: An exactly solved many-body model

    Full text link
    A model Hamiltonian is introduced which considers the main features of the experimental spin filter situation as s-f interaction, planar geometry and the strong external electric field. The proposed many-body model can be solved analytically and exactly using Green functions. The spin polarization of the field-emitted electrons is expressed in terms of spin-flip probabilities, which on their part are put down to the exactly known dynamic quantities of the system. The calculated electron spin polarization shows remarkable dependencies on the electron velocity perpendicular to the emitting plane and the strength of s-f coupling. Experimentally observed polarization values of about 90% are well understood within the framework of the proposed model.Comment: accepted (Physical Review B); 10 pages, 11 figures; http://orion.physik.hu-berlin.de

    Geometric Aspects of the Dipolar Interaction in Lattices of Small Particles

    Full text link
    The hysteresis curves of systems composed of small interacting magnetic particles, regularly placed on stacked layers, are obtained with Monte Carlo simulations. The remanence as a function of temperature, in interacting systems, presents a peak that separates two different magnetic states. At low temperatures, small values of remanence are a consequence of antiferromagnetic order due to the dipolar interaction. At higher values of temperature the increase of the component normal to the lattice plane is responsible for the small values of remanence. The effect of the number of layers, coordination number and distance between particles are investigated.Comment: 5 pages, 7 figure

    Cluster Monte Carlo Algorithm for the Quantum Rotor Model

    Full text link
    We propose a highly efficient "worm" like cluster Monte Carlo algorithm for the quantum rotor model in the link-current representation. We explicitly prove detailed balance for the new algorithm even in the presence of disorder. For the pure quantum rotor model with μ=0\mu=0 the new algorithm yields high precision estimates for the critical point Kc=0.33305(5)K_c=0.33305(5) and the correlation length exponent ν=0.670(3)\nu=0.670(3). For the disordered case, μ=1/2±1/2\mu=1/2 \pm 1/2, we find ν=1.15(10)\nu=1.15(10).Comment: 5 pages, 3 figure

    Phase diagram of a Disordered Boson Hubbard Model in Two Dimensions

    Full text link
    We study the zero-temperature phase transition of a two-dimensional disordered boson Hubbard model. The phase diagram of this model is constructed in terms of the disorder strength and the chemical potential. Via quantum Monte Carlo simulations, we find a multicritical line separating the weak-disorder regime, where a random potential is irrelevant, from the strong-disorder regime. In the weak-disorder regime, the Mott-insulator-to-superfluid transition occurs, while, in the strong-disorder regime, the Bose-glass-to-superfluid transition occurs. On the multicritical line, the insulator-to-superfluid transition has the dynamical critical exponent z=1.35±0.05z=1.35 \pm 0.05 and the correlation length critical exponent ν=0.67±0.03\nu=0.67 \pm 0.03, that are different from the values for the transitions off the line. We suggest that the proliferation of the particle-hole pairs screens out the weak disorder effects.Comment: 4 pages, 4 figures, to be published in PR

    Destruction of diagonal and off-diagonal long range order by disorder in two-dimensional hard core boson systems

    Full text link
    We use quantum Monte Carlo simulations to study the effect of disorder, in the form of a disordered chemical potential, on the phase diagram of the hard core bosonic Hubbard model in two dimensions. We find numerical evidence that in two dimensions, no matter how weak the disorder, it will always destroy the long range density wave order (checkerboard solid) present at half filling and strong nearest neighbor repulsion and replace it with a bose glass phase. We study the properties of this glassy phase including the superfluid density, energy gaps and the full Green's function. We also study the possibility of other localized phases at weak nearest neighbor repulsion, i.e. Anderson localization. We find that such a phase does not truly exist: The disorder must exceed a threshold before the bosons (at weak nn repulsion) are localized. The phase diagram for hard core bosons with disorder cannot be obtained easily from the soft core phase diagram discussed in the literature.Comment: 7 pages, 10 eps figures include

    Critical exponents in Ising spin glasses

    Full text link
    We determine accurate values of ordering temperatures and critical exponents for Ising Spin Glass transitions in dimension 4, using a combination of finite size scaling and non-equilibrium scaling techniques. We find that the exponents η\eta and zz vary with the form of the interaction distribution, indicating non-universality at Ising spin glass transitions. These results confirm conclusions drawn from numerical data for dimension 3.Comment: 6 pages, RevTeX (or Latex, etc), 10 figures, Submitted to PR

    Nature of the quantum phase transitions in the two-dimensional hardcore boson model

    Full text link
    We use two Quantum Monte Carlo algorithms to map out the phase diagram of the two-dimensional hardcore boson Hubbard model with near (V1V_1) and next near (V2V_2) neighbor repulsion. At half filling we find three phases: Superfluid (SF), checkerboard solid and striped solid depending on the relative values of V1V_1, V2V_2 and the kinetic energy. Doping away from half filling, the checkerboard solid undergoes phase separation: The superfluid and solid phases co-exist but not as a single thermodynamic phase. As a function of doping, the transition from the checkerboard solid is therefore first order. In contrast, doping the striped solid away from half filling instead produces a striped supersolid phase: Co-existence of density order with superfluidity as a single phase. One surprising result is that the entire line of transitions between the SF and checkerboard solid phases at half filling appears to exhibit dynamical O(3) symmetry restoration. The transitions appear to be in the same universality class as the special Heisenberg point even though this symmetry is explicitly broken by the V2V_2 interaction.Comment: 10 pages, 14 eps figures, include

    Real space application of the mean-field description of spin glass dynamics

    Full text link
    The out of equilibrium dynamics of finite dimensional spin glasses is considered from a point of view going beyond the standard `mean-field theory' versus `droplet picture' debate of the last decades. The main predictions of both theories concerning the spin glass dynamics are discussed. It is shown, in particular, that predictions originating from mean-field ideas concerning the violations of the fluctuation-dissipation theorem apply quantitatively, provided one properly takes into account the role of the spin glass coherence length which plays a central role in the droplet picture. Dynamics in a uniform magnetic field is also briefly discussed.Comment: 4 pages, 4 eps figures. v2: published versio

    Cooling-rate effects in a model of (ideal?) glass

    Full text link
    Using Monte Carlo simulations we study cooling-rate effects in a three-dimensional Ising model with four-spin interaction. During coarsening, this model develops growing energy barriers which at low temperature lead to very slow dynamics. We show that the characteristic zero-temperature length increases very slowly with the inverse cooling rate, similarly to the behaviour of ordinary glasses. For computationally accessible cooling rates the model undergoes an ideal glassy transition, i.e., the glassy transition for very small cooling rate coincides a thermodynamic singularity. We also study cooling of this model with a certain fraction of spins fixed. Due to such heterogeneous crystalization seeds the final state strongly depends on the cooling rate.Only for sufficiently fast cooling rate does the system end up in a glassy state while slow cooling inevitably leads to a crystal phase.Comment: 11 pages, 6 figure

    Off-Equilibrium Dynamics in Finite-Dimensional Spin Glass Models

    Full text link
    The low temperature dynamics of the two- and three-dimensional Ising spin glass model with Gaussian couplings is investigated via extensive Monte Carlo simulations. We find an algebraic decay of the remanent magnetization. For the autocorrelation function C(t,tw)=[]avC(t,t_w)=[]_{av} a typical aging scenario with a t/twt/t_w scaling is established. Investigating spatial correlations we find an algebraic growth law ξ(tw)∼twα(T)\xi(t_w)\sim t_w^{\alpha(T)} of the average domain size. The spatial correlation function G(r,tw)=[<Si(tw)Si+r(tw)>2]avG(r,t_w)=[< S_i(t_w)S_{i+r}(t_w)>^2]_{av} scales with r/ξ(tw)r/\xi(t_w). The sensitivity of the correlations in the spin glass phase with respect to temperature changes is examined by calculating a time dependent overlap length. In the two dimensional model we examine domain growth with a new method: First we determine the exact ground states of the various samples (of system sizes up to 100×100100\times 100) and then we calculate the correlations between this state and the states generated during a Monte Carlo simulation.Comment: 38 pages, RevTeX, 14 postscript figure
    • …
    corecore