3,542 research outputs found

    Rapid hydrodynamic expansion in relativistic heavy-ion collisions

    Full text link
    Hydrodynamic expansion of the hot fireball created in relativistic Au-Au collisions at 200GeV in 3+1-dimensions is studied. We obtain a simultaneous, satisfactory description of the transverse momentum spectra, elliptic flow and pion correlation radii for different collision centralities and different rapidities. Early initial time of the evolution is required to reproduce the interferometry data, which provides a strong indication of the early onset of collectivity. We can also constraint the shape of the initial energy density in the beam direction, with a relatively high initial energy density at the center of the fireball.Comment: 10 pages, 13 fig

    Free-streaming approximation in early dynamics of relativistic heavy-ion collisions

    Full text link
    We investigate an approximation to early dynamics in relativistic heavy-ion collisions, where after formation the partons are free streaming and around the proper time of 1 fm/c undergo a sudden equilibration described in terms of the Landau matching condition. We discuss physical and formal aspects of this approach. In particular, we show that initial azimuthally asymmetric transverse flow develops for non-central collisions as a consequence of the sudden equilibration. Moreover, the energy-momentum tensor from the free-streaming stage matches very smoothly to the form used in the transverse hydrodynamics, whereas matching to isotropic hydrodynamics requires a more pronounced change in the energy-momentum tensor. After the hydrodynamic phase statistical hadronization is carried out with the help of THERMINATOR. The physical results for the transverse-momentum spectra, the elliptic-flow, and the Hanbury-Brown--Twiss correlation radii, including the ratio R_out/R_side as well as the dependence of the radii on the azimuthal angle (azHBT), are properly described within our approach. The agreement is equally good for a purely hydrodynamic evolution started at an early proper time of 0.25 fm/c, or for the free streaming started at that time, followed by the sudden equilibration at tau ~1 fm/c and then by perfect hydrodynamics. Thus, the inclusion of free streaming allows us to delay the start of hydrodynamics to more realistic times of the order of 1 fm/c.Comment: 10 pages, 12 figure

    Early dynamics of transversally thermalized matter

    Full text link
    We argue that the idea that the parton system created in relativistic heavy-ion collisions is formed in a state with transverse momenta close to thermodynamic equilibrium and its subsequent dynamics at early times is dominated by pure transverse hydrodynamics of the perfect fluid is compatible with the data collected at RHIC. This scenario of early parton dynamics may help to solve the problem of early equilibration.Comment: 4 pages, 2 figures, Talk given by M. Chojnacki at Quark Matter 2008, Jaipur, Indi

    Solution of the RHIC HBT puzzle with Gaussian initial conditions

    Full text link
    It is argued that the consistent description of the transverse-momentum spectra, elliptic flow, and the HBT radii in the relativistic heavy-ion collisions studied at RHIC may be obtained within the hydrodynamic model if one uses the Gaussian profile for the initial energy density in the transverse plane. Moreover, we show that the results obtained in the scenario with an early start of hydrodynamics (at the proper time tau0 = 0.25 fm) are practically equivalent to the results obtained in the model where the hydrodynamics is preceded by the free-streaming stage of partons (in the proper time interval 0.25 fm < tau < 1 fm) which suddenly equilibrate and with the help of the Landau matching conditions are transformed into the hydrodynamic regime (at the proper time tau0 = 1 fm).Comment: talk presented by WF at SQM2008 Conferenc

    Occupation preference values in doped CmIm' multinaries from EXAFS and FTIR correlative analysis

    No full text
    We discuss which x-ray absorption fine structure (EXAFS) data of binary doped CmIm' compound structures can be unfolded to determine elemental bond distances and the deviations from random configurations due to site preference occupations (SOPs). SOP-deviation estimations can be further confirmed by independent Fourier transform infrared (FTIR) data analysis. The limits and restrictions of our model are presented and discussed

    Ethyl cyanide on Titan: Spectroscopic detection and mapping using ALMA

    Get PDF
    We report the first spectroscopic detection of ethyl cyanide (C2_2H5_5CN) in Titan's atmosphere, obtained using spectrally and spatially resolved observations of multiple emission lines with the Atacama Large Millimeter/submillimeter array (ALMA). The presence of C2_2H5_5CN in Titan's ionosphere was previously inferred from Cassini ion mass spectrometry measurements of C2_2H5_5CNH+^+. Here we report the detection of 27 rotational lines from C2_2H5_5CN (in 19 separate emission features detected at >3σ>3\sigma confidence), in the frequency range 222-241 GHz. Simultaneous detections of multiple emission lines from HC3_3N, CH3_3CN and CH3_3CCH were also obtained. In contrast to HC3_3N, CH3_3CN and CH3_3CCH, which peak in Titan's northern (spring) hemisphere, the emission from C2_2H5_5CN is found to be concentrated in the southern (autumn) hemisphere, suggesting a distinctly different chemistry for this species, consistent with a relatively short chemical lifetime for C2_2H5_5CN. Radiative transfer models show that most of the C2_2H5_5CN is concentrated at altitudes 300-600 km, suggesting production predominantly in the mesosphere and above. Vertical column densities are found to be in the range (2-5)×1014\times10^{14} cm2^{-2}.Comment: Published in 2015, ApJL, 800, L1

    Generation-free Agent-based Evolutionary Computing

    Get PDF
    AbstractMetaheuristics resulting from the hybridization of multi-agent systems with evolutionary computing are efficient in many optimization problems. Evolutionary multi-agent systems (EMAS) are more similar to biological evolution than classical evolutionary algorithms. However, technological limitations prevented the use of fully asynchronous agents in previous EMAS implementations. In this paper we present a new algorithm for agent-based evolutionary computations. The individuals are represented as fully autonomous and asynchronous agents. Evolutionary operations are performed continuously and no artificial generations need to be distinguished. Our results show that such asynchronous evolutionary operators and the resulting absence of explicit generations lead to significantly better results. An efficient implementation of this algorithm was possible through the use of Erlang technology, which natively supports lightweight processes and asynchronous communication

    Highly-anisotropic and strongly-dissipative hydrodynamics with transverse expansion

    Full text link
    A recently formulated framework of highly-anisotropic and strongly-dissipative hydrodynamics (ADHYDRO) is used to describe the evolution of matter created in ultra-relativistic heavy-ion collisions. New developments of the model contain: the inclusion of asymmetric transverse expansion (combined with the longitudinal boost-invariant flow) and comparisons of the model results with the RHIC data, which have become possible after coupling of ADHYDRO with THERMINATOR. Various soft-hadronic observables (the transverse-momentum spectra, the elliptic flow coefficient v_2, and the HBT radii) are calculated for different initial conditions characterized by the value of the initial pressure asymmetry. We find that as long as the initial energy density profile is unchanged the calculated observables remain practically the same. This result indicates the insensitivity of the analyzed observables to the initial anisotropy of pressure and suggests that the complete thermalization of the system may be delayed to easily acceptable times of about 1 fm/c
    corecore