5 research outputs found

    Diamond Synthesis Employing Nanoparticle Seeds

    Get PDF
    Iron nanoparticles were employed to induce the synthesis of diamond on molybdenum, silicon, and quartz substrates. Diamond films were grown using conventional conditions for diamond synthesis by hot filament chemical vapor deposition, except that dispersed iron oxide nanoparticles replaced the seeding. This approach to diamond induction can be combined with dip pen nanolithography for the selective deposition of diamond and diamond patterning while avoiding surface damage associated to diamond-seeding methods

    Iron Oxide Nanoparticles Employed as Seeds for the Induction of Microcrystalline Diamond Synthesis

    Get PDF
    Iron nanoparticles were employed to induce the synthesis of diamond on molybdenum, silicon, and quartz substrates. Diamond films were grown using conventional conditions for diamond synthesis by hot filament chemical vapor deposition, except that dispersed iron oxide nanoparticles replaced the seeding. X-ray diffraction, visible, and ultraviolet Raman Spectroscopy, energy-filtered transmission electron microscopy , electron energy-loss spectroscopy, and X-ray photoelectron spectroscopy (XPS) were employed to study the carbon bonding nature of the films and to analyze the carbon clustering around the seed nanoparticles leading to diamond synthesis. The results indicate that iron oxide nanoparticles lose the O atoms, becoming thus active C traps that induce the formation of a dense region of trigonally and tetrahedrally bonded carbon around them with the ensuing precipitation of diamond-type bonds that develop into microcrystalline diamond films under chemical vapor deposition conditions. This approach to diamond induction can be combined with dip pen nanolithography for the selective deposition of diamond and diamond patterning while avoiding surface damage associated to diamond-seeding methods

    Thermionic emission energy distribution from nanocrystalline diamond films for direct thermal-electrical energy conversion applications

    Get PDF
    In the ongoing quest for energy production by nonconventional methods, energy conversion by vacuum and solid-state thermionic emission devices is one of the potentially efficient pathways for converting thermal energy directly into electrical power. The realization of practical of thermionic energy conversion devices strongly depends on achieving low work function materials, which is thus far a limiting factor. In an attempt to develop a new low work function thermionic material, this work reports thermionic emission energy distributions (TEEDs) from nanocrystalline diamond (NCD) films in the temperature range from 700 to 900 °C that reveal a consistent effective work function of 3.3 eV. The NCD films also exhibit emission peaks corresponding to higher work functions as indicated by shifts in their energy position and relative intensity as a function of temperature. These shifts thus appear to be related to instabilities in the NCD\u27s surface chemistry. The analysis of these data yields information on the origin of the low effective work function of NCD

    Fabrication of Nanodiamond Coating on Steel

    No full text
    The hardness, heat conductivity and low friction coefficient of microcrystalline diamond make it a suitable candidate for tribological applications. However, its roughness and high deposition temperature pose significant obstacles to these applications. We have successfully grown nanocrystalline diamond on steel at 400 °C by hot-filament chemical vapor deposition by employing a CrN interfacial layer. Nanocrystalline diamond combines hardness and surface smoothness required in tribological applications. Microcrystalline diamond and carbon nanotubes can also be grown by controlling the deposition parameters. The fabricated films were characterized with Raman spectroscopy, X-ray diffraction (XRD), Transmission electron microscopy (TEM), and scanning electron microscopy (SEM)
    corecore