147 research outputs found

    Improved controllability of wet infiltration technique for fabrication of solid oxide fuel cell anodes

    Get PDF
    Ni/yttria-stabilized zirconia anodes of solid oxide fuel cells are fabricated by a wet infiltration technique and the ability of the infiltration technique to control the anode microstructure is quantitatively demonstrated by a detailed three-dimensional microstructural analysis. The microstructural analysis reveals favorable aspects of the infiltrated anodes, such as larger triple-phase boundary density and sufficiently large pore size, and they are mostly unachievable by the conventional powder-mixing and sintering approaches. The improved controllability of the infiltration technique is expected to be useful to tailor porous microstructures to meet the multiple requirements for transport and electrochemical reactions within the anodes

    Enhanced Imaging of Lithium Ion Battery Electrode Materials

    Get PDF
    This was Paper 963 presented at the Chicago, Illinois, Meeting of the IMLB, June 19–24, 2016. This paper is part of the Focus Issue of Selected Papers from IMLB 2016 with Invited Papers Celebrating 25 Years of Lithium Ion Batteries.In this study we present a novel method of lithium ion battery electrode sample preparation with a new type of epoxy impregnation, brominated (Br) epoxy, which is introduced here for the first time for this purpose and found suitable for focused ion beam scanning electron microscope (FIB-SEM) tomography. The Br epoxy improves image contrast, which enables higher FIB-SEM resolution (3D imaging), which is amongst the highest ever reported for composite LFP cathodes using FIB-SEM. In turn it means that the particles are well defined and the size distribution of each phase can be analyzed accurately from the complex 3D electrode microstructure using advanced quantification algorithms. The authors present for the first time a new methodology of contrast enhancement for 3D imaging, including novel advanced quantification, on a commercial Lithium Iron Phosphate (LFP) LiFePO4 cathode. The aim of this work is to improve the quality of the 3D imaging of challenging battery materials by developing methods to increase contrast between otherwise previously poorly differentiated phases. This is necessary to enable capture of the real geometry of electrode microstructures, which allows measurement of a wide range of microstructural properties such as pore/particle size distributions, surface area, tortuosity and porosity. These properties play vital roles in determining the performance of battery electrodes

    Exchange current model for (La0.8Sr0.2)0.95MnO3 (LSM) porous cathode for solid oxide fuel cells

    Get PDF
    In this paper, we propose an empirical formula for i0, TPB, the exchange current density per unit triple-phase boundary (TPB) length, for porous lanthanum strontium manganite (LSM) cathodes of solid oxide fuel cells (SOFCs); the evaluation of i0, TPB is of crucial importance in numerical simulations of electrodes based on reconstructed microstructures obtained by a dual beam focused ion beam scanning electron microscopy (FIB-SEM) and tomography techniques. To derive a widely applicable empirical formula for i0, TPB, electrochemical measurements of porous LSM cathodes are conducted under various oxygen partial pressures (0.05–0.25 atm) and temperatures (800–950 °C). By comparing the derived formula with that derived from a thin and dense patterned LSM electrode used in previous studies, it is found that at an air temperature of 800 °C, i0, TPB derived from a porous LSM cathode is approximately 40% smaller than that for the patterned electrode. This can be attributed to the fact that the electrochemical reaction in thin and dense electrodes can occur not only at the TPBs but also at the LSM surface owing to the non-negligible ionic conductivity of LSM. The derived formula is also applied to a three-dimensional numerical simulation to confirm its validity

    SOCS-1/SSI-1-Deficient NKT Cells Participate in Severe Hepatitis through Dysregulated Cross-Talk Inhibition of IFN-γ and IL-4 Signaling In Vivo

    Get PDF
    AbstractSuppressor of cytokine signaling-1 (SOCS-1), also known as STAT-induced STAT inhibitor-1 (SSI-1), is a negative feedback molecule for cytokine signaling, and its in vivo deletion induces fulminant hepatitis. However, elimination of the STAT1 or STAT6 gene or deletion of NKT cells substantially prevented severe hepatitis in SOCS-1-deficient mice, while administration of IFN-γ and IL-4 accelerated its development. SOCS-1 deficiency not only sustained IFN-γ/IL-4 signaling but also eliminated the cross-inhibitory action of IFN-γ on IL-4 signaling. These results suggest that SOCS-1 deficiency-induced persistent activation of STAT1 and STAT6, which would be inhibited by SOCS-1 under normal conditions, may induce abnormal activation of NKT cells, thus leading to lethal pathological changes in SOCS-1-deficient mice

    Pharmacologic characterization of TBP1901, a prodrug form of aglycone curcumin, and CRISPR-Cas9 screen for therapeutic targets of aglycone curcumin

    Get PDF
    プロドラッグ型クルクミン注射製剤の抗腫瘍効果及び治療標的の包括的な解析 --安全性の高い抗がん薬としての開発に期待--. 京都大学プレスリリース. 2022-10-21.Curcumin (aglycone curcumin) has antitumor properties in a variety of malignancies via the alteration of multiple cancer-related biological pathways; however, its clinical application has been hampered due to its poor bioavailability. To overcome this limitation, we have developed a synthesized curcumin β-D-glucuronide sodium salt (TBP1901), a prodrug form of aglycone curcumin. In this study, we aimed to clarify the pharmacologic characteristics of TBP1901. In β-glucuronidase (GUSB)-proficient mice, both curcumin β-D-glucuronide and its active metabolite, aglycone curcumin, were detected in the blood after TBP1901 injection, whereas only curcumin β-D-glucuronide was detected in GUSB-impaired mice, suggesting that GUSB plays a pivotal role in the conversion of TBP1901 into aglycone curcumin in vivo. TBP1901 itself had minimal antitumor effects in vitro, whereas it demonstrated significant antitumor effects in vivo. Genome-wide clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 screen disclosed the genes associated with NF-κB signaling pathway and mitochondria were among the highest hit. In vitro, aglycone curcumin inhibited NF-kappa B signaling pathways whereas it caused production of reactive oxygen species (ROS). ROS scavenger, N-acetyl-L-cysteine, partially reversed antitumor effects of aglycone curcumin. In summary, TBP1901 can exert antitumor effects as a prodrug of aglycone curcumin through GUSB-dependent activation
    corecore