33 research outputs found

    Quantum Coherence of Relic Neutrinos

    Full text link
    We argue that in at least a portion of the history of the universe the relic background neutrinos are spatially-extended, coherent superpositions of mass states. We show that an appropriate quantum mechanical treatment affects the neutrino mass values derived from cosmological data. The coherence scale of these neutrino flavor wavepackets can be an appreciable fraction of the causal horizon size, raising the possibility of spacetime curvature-induced decoherence.Comment: 4 pages, 4 figures; matches publication in PR

    Neutrino Burst-Generated Gravitational Radiation From Collapsing Supermassive Stars

    Full text link
    We estimate the gravitational radiation signature of the electron/positron annihilation-driven neutrino burst accompanying the asymmetric collapse of an initially hydrostatic, radiation-dominated supermassive object suffering the Feynman-Chandrasekhar instability. An object with a mass 5×104 M⊙<M<5×105 M⊙5\times10^4\,M_\odot<M<5\times10^5\,M_\odot, with primordial metallicity, is an optimal case with respect to the fraction of its rest mass emitted in neutrinos as it collapses to a black hole: lower initial mass objects will be subject to scattering-induced neutrino trapping and consequently lower efficiency in this mode of gravitational radiation generation; while higher masses will not get hot enough to radiate significant neutrino energy before producing a black hole. The optimal case collapse will radiate several percent of the star's rest mass in neutrinos and, with an assumed small asymmetry in temperature at peak neutrino production, produces a characteristic linear memory gravitational wave burst signature. The timescale for this signature, depending on redshift, is ∼1 s\sim1{\rm~s} to 10 s10{\rm~s}, optimal for proposed gravitational wave observatories like DECIGO. Using the response of that detector, and requiring a signal-to-noise ratio SNR >> 5, we estimate that collapse of a ∼5×104 M⊙\sim 5\times10^4\,M_\odot supermassive star could produce a neutrino burst-generated gravitational radiation signature detectable to redshift z≲7z\lesssim7. With the envisioned ultimate DECIGO design sensitivity, we estimate that the linear memory signal from these events could be detectable with SNR >5> 5 to z≲13z \lesssim13.Comment: 15 pages, 8 figure

    Neutrino-Accelerated Hot Hydrogen Burning

    Get PDF
    We examine the effects of significant electron anti-neutrino fluxes on hydrogen burning. Specifically, we find that the bottleneck weak nuclear reactions in the traditional pp-chain and the hot CNO cycle can be accelerated by anti-neutrino capture, increasing the energy generation rate. We also discuss how anti-neutrino capture reactions can alter the conditions for break out into the rp-process. We speculate on the impact of these considerations for the evolution and dynamics of collapsing very- and super- massive compact objects.Comment: 14 pages, 6 figures, submitted to ApJ; minor content chang

    Heavy sterile neutrinos, entropy and relativistic energy production, and the relic neutrino background

    Full text link
    We explore the implications of the existence of heavy neutral fermions (i.e., sterile neutrinos) for the thermal history of the early universe. In particular, we consider sterile neutrinos with rest masses in the 100 MeV to 500 MeV range, with couplings to ordinary active neutrinos large enough to guarantee thermal and chemical equilibrium at epochs in the early universe with temperatures T > 1 GeV, but in a range to give decay lifetimes from seconds to minutes. Such neutrinos would decouple early, with relic densities comparable to those of photons, but decay out of equilibrium, with consequent prodigious entropy generation prior to, or during, Big Bang Nucleosynthesis (BBN). Most of the ranges of sterile neutrino rest mass and lifetime considered are at odds with Cosmic Microwave Background (CMB) limits on the relativistic particle contribution to energy density (e.g., as parameterized by N_eff). However, some sterile neutrino parameters can lead to an acceptable N_eff. These parameter ranges are accompanied by considerable dilution of the ordinary background relic neutrinos, possibly an adverse effect on BBN, but sometimes fall in a range which can explain measured neutrino masses in some particle physics models. A robust signature of these sterile neutrinos would be a measured N_eff not equal to 3 coupled with no cosmological signal for neutrino rest mass when the detection thresholds for these probes are below laboratory-established neutrino mass values, either as established by the atmospheric neutrino oscillation scale or direct measurements with, e.g., KATRIN or neutrino-less double beta decay experiments.Comment: 18 pages, 12 figure

    Lepton Number-Driven Sterile Neutrino Production in the Early Universe

    Full text link
    We examine medium-enhanced, neutrino scattering-induced decoherent production of dark matter candidate sterile neutrinos in the early universe. In cases with a significant net lepton number we find two resonances, where the effective in-medium mixing angles are large. We calculate the lepton number depletion-driven evolution of these resonances. We describe the dependence of this evolution on lepton numbers, sterile neutrino rest mass, and the active-sterile vacuum mixing angle. We find that this resonance evolution can result in relic sterile neutrino energy spectra with a generic form which is sharply peaked in energy. We compare our complete quantum kinetic equation treatment with the widely-used quantum Zeno ansatz.Comment: 15 pages, 7 figures; matches published versio

    Exploring resonantly produced mixed sterile neutrino dark matter models

    Full text link
    An unidentified 3.55 keV X-ray line in stacked spectra of galaxies and clusters raises the interesting possibility that it originates from the decay of sterile neutrino dark matter. In this work, we explore mixed sterile neutrino dark matter models that combine cold dark matter and warmer sterile neutrino dark matter produced through lepton number-driven active-to-sterile neutrino transformation. We analyze the sensitivity of the sterile neutrino spectra on active-sterile mixing and on initial neutrino lepton numbers. Furthermore, we assess the viability of these models with estimates of the number of subhalos formed as the host sites of satellite galaxies.Comment: 10 pages, 12 figure

    Coherent Active-Sterile Neutrino Flavor Transformation in the Early Universe

    Get PDF
    We solve the problem of coherent Mikheyev-Smirnov-Wolfenstein (MSW) resonant active-to-sterile neutrino flavor conversion driven by an initial lepton number in the early universe. We find incomplete destruction of lepton number in this process and a sterile neutrino energy distribution with a distinctive cusp and high energy tail. These features imply alteration of the non-zero lepton number primordial nucleosynthesis paradigm when there exist sterile neutrinos with rest masses ~ 1 eV. This could result in better light element probes of (constraints on) these particles.Comment: 4 pages, 3 figures, matches version printed in PR

    Diluted equilibrium sterile neutrino dark matter

    Full text link
    We present a model where sterile neutrinos with rest masses in the range ~ keV to ~ MeV can be the dark matter and be consistent with all laboratory, cosmological, large-scale structure, as well as x-ray constraints. These sterile neutrinos are assumed to freeze out of thermal and chemical equilibrium with matter and radiation in the very early Universe, prior to an epoch of prodigious entropy generation ("dilution") from out-of-equilibrium decay of heavy particles. In this work, we consider heavy, entropy-producing particles in the ~ TeV to ~ EeV rest-mass range, possibly associated with new physics at high-energy scales. The process of dilution can give the sterile neutrinos the appropriate relic densities, but it also alters their energy spectra so that they could act like cold dark matter, despite relatively low rest masses as compared to conventional dark matter candidates. Moreover, since the model does not rely on active-sterile mixing for producing the relic density, the mixing angles can be small enough to evade current x-ray or lifetime constraints. Nevertheless, we discuss how future x-ray observations, future lepton number constraints, and future observations and sophisticated simulations of large-scale structure could, in conjunction, provide evidence for this model and/or constrain and probe its parameters.Comment: 15 pages, 6 figures. v2: changes in text and figures; matches published versio
    corecore