3 research outputs found

    Ag/ZnO NANOCOMPOSITES AS REAGENTS FOR WATER TREATMENT

    Full text link
    The study was funded by the program of the Perm Research and Education Center "Rational subsoil use". Analytical, spectroscopic, and biological studies were carried out using the equipment of the Core Facilities Center "Research of materials and matter" at the PFRC UB RAS

    Modified Desolvation Method Enables Simple One-Step Synthesis of Gelatin Nanoparticles from Different Gelatin Types with Any Bloom Values

    Full text link
    Gelatin nanoparticles found numerous applications in drug delivery, bioimaging, immunotherapy, and vaccine development as well as in biotechnology and food science. Synthesis of gelatin nanoparticles is usually made by a two-step desolvation method, which, despite providing stable and homogeneous nanoparticles, has many limitations, namely complex procedure, low yields, and poor reproducibility of the first desolvation step. Herein, we present a modified one-step desolvation method, which enables the quick, simple, and reproducible synthesis of gelatin nanoparticles. Using the proposed method one can prepare gelatin nanoparticles from any type of gelatin with any bloom number, even with the lowest ones, which remains unattainable for the traditional two-step technique. The method relies on quick one-time addition of poor solvent (preferably isopropyl alcohol) to gelatin solution in the absence of stirring. We applied the modified desolvation method to synthesize nanoparticles from porcine, bovine, and fish gelatin with bloom values from 62 to 225 on the hundreds-of-milligram scale. Synthesized nanoparticles had average diameters between 130 and 190 nm and narrow size distribution. Yields of synthesis were 62–82% and can be further increased. Gelatin nanoparticles have good colloidal stability and withstand autoclaving. Moreover, they were non-toxic to human immune cells. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.Funding: The reported study was funded by RFBR and Kaliningrad Oblast according to the research project № 19-415-393005 (preparation of fluorescence gelatin nanoparticles and study of their fluorescent properties), by RFBR research project 19-015-00408 (preparation of gelatin nanoparticles by the desolvation method), and by Ministry of Science and Higher Education of the Russian Federation within the framework of the Russian State Assignment under contract No. AAAA-А19-119112290010-7 (assessment of nanoparticles cytotoxicity)

    Novel synthesis and electrochemical investigations of ZnO/C composites for lithium-ion batteries

    Full text link
    For the first time, ZnO/C composites were synthesized using zinc glycerolate as a precursor through one-step calcination under a nitrogen atmosphere. The effect of the heat treatment conditions on the structure, composition, morphology as well as on the electrochemical properties regarding application in lithium-ion batteries are investigated. The products obtained by calcination of the precursor in nitrogen at 400—800 °C consist of zinc oxide nanoparticles and amorphous carbon that is in-situ generated from organic components of the glycerolate precursor. When used as anode material for lithium-ion batteries, the as-prepared ZnO/C composite synthesized at a calcination temperature of 700 °C delivers initial discharge and charge capacities of 1061 and 671 mAh g−1 at a current rate of 100 mA g−1 and hence 1.5 times more than bare ZnO, which reaches only 749/439 mAh g−1. The native carbon improves the conductivity, allowing efficient electronic conductivity and Li-ion diffusion. By means of ex-situ XRD studies a two-step storage mechanism is proven. © 2021, The Author(s).This work was supported by the Deutsche Forschungsgemeinschaft through projects KL1824/12-1 and KL 1824/14-1. G.Z. acknowledges support of the state order via the Ministry of Science and Higher Education of Russia (No AAAA-A19-119031890025-9). E.T. acknowledges support by the BMWi through project 03ET6095C (HiKoMat). The authors thank I. Glass for experimental support
    corecore