29 research outputs found

    Effects of Once-Weekly Exenatide on Cardiovascular Outcomes in Type 2 Diabetes.

    Get PDF
    Abstract BACKGROUND: The cardiovascular effects of adding once-weekly treatment with exenatide to usual care in patients with type 2 diabetes are unknown. METHODS: We randomly assigned patients with type 2 diabetes, with or without previous cardiovascular disease, to receive subcutaneous injections of extended-release exenatide at a dose of 2 mg or matching placebo once weekly. The primary composite outcome was the first occurrence of death from cardiovascular causes, nonfatal myocardial infarction, or nonfatal stroke. The coprimary hypotheses were that exenatide, administered once weekly, would be noninferior to placebo with respect to safety and superior to placebo with respect to efficacy. RESULTS: In all, 14,752 patients (of whom 10,782 [73.1%] had previous cardiovascular disease) were followed for a median of 3.2 years (interquartile range, 2.2 to 4.4). A primary composite outcome event occurred in 839 of 7356 patients (11.4%; 3.7 events per 100 person-years) in the exenatide group and in 905 of 7396 patients (12.2%; 4.0 events per 100 person-years) in the placebo group (hazard ratio, 0.91; 95% confidence interval [CI], 0.83 to 1.00), with the intention-to-treat analysis indicating that exenatide, administered once weekly, was noninferior to placebo with respect to safety (P<0.001 for noninferiority) but was not superior to placebo with respect to efficacy (P=0.06 for superiority). The rates of death from cardiovascular causes, fatal or nonfatal myocardial infarction, fatal or nonfatal stroke, hospitalization for heart failure, and hospitalization for acute coronary syndrome, and the incidence of acute pancreatitis, pancreatic cancer, medullary thyroid carcinoma, and serious adverse events did not differ significantly between the two groups. CONCLUSIONS: Among patients with type 2 diabetes with or without previous cardiovascular disease, the incidence of major adverse cardiovascular events did not differ significantly between patients who received exenatide and those who received placebo. (Funded by Amylin Pharmaceuticals; EXSCEL ClinicalTrials.gov number, NCT01144338 .)

    Decreased SAP Expression in T Cells from Patients with Systemic Lupus Erythematosus Contributes to Early Signaling Abnormalities and Reduced IL-2 Production.

    No full text
    T cells from patients with systemic lupus erythematosus (SLE) display a number of abnormalities, including increased early signaling events following engagement of the TCR. Signaling lymphocytic activation molecule family cell surface receptors and the X-chromosome-defined signaling lymphocytic activation molecule-associated protein (SAP) adaptor are important in the development of several immunocyte lineages and modulating the immune response. We present evidence that SAP protein levels are decreased in T cells and in their main subsets isolated from 32 women and three men with SLE, independent of disease activity. In SLE T cells, SAP protein is also subject to increased degradation by caspase-3. Forced expression of SAP in SLE T cells normalized IL-2 production, calcium (Ca(2+)) responses, and tyrosine phosphorylation of a number of proteins. Exposure of normal T cells to SLE serum IgG, known to contain anti-CD3/TCR Abs, resulted in SAP downregulation. We conclude that SLE T cells display reduced levels of the adaptor protein SAP, probably as a result of continuous T cell activation and degradation by caspase-3. Restoration of SAP levels in SLE T cells corrects the overexcitable lupus T cell phenotype

    Signaling Lymphocytic Activation Molecule Family Member 7 Engagement Restores Defective Effector CD8+ T Cell Function in Systemic Lupus Erythematosus.

    No full text
    Effector CD8+ T cell function is impaired in systemic lupus erythematosus (SLE) and is associated with a compromised ability to fight infections. Signaling lymphocytic activation molecule family member 7 (SLAMF7) engagement has been shown to enhance natural killer cell degranulation. This study was undertaken to characterize the expression and function of SLAMF7 on CD8+ T cell subsets isolated from the peripheral blood of SLE patients and healthy subjects. CD8+ T cell subset distribution, SLAMF7 expression, and expression of cytolytic enzymes (perforin, granzyme A [GzmA], and GzmB) on cells isolated from SLE patients and healthy controls were analyzed by flow cytometry. CD107a expression and interferon-γ (IFNγ) production in response to viral antigenic stimulation in the presence or absence of an anti-SLAMF7 antibody were assessed by flow cytometry. Antiviral cytotoxic activity in response to SLAMF7 engagement was determined using a flow cytometry-based assay. The distribution of CD8+ T cell subsets was altered in the peripheral blood of SLE patients, with a decreased effector cell subpopulation. Memory CD8+ T cells from SLE patients displayed decreased amounts of SLAMF7, a surface receptor that characterizes effector CD8+ T cells. Ligation of SLAMF7 increased CD8+ T cell degranulation capacity and the percentage of IFNγ-producing cells in response to antigen challenge in SLE patients and healthy controls. Moreover, SLAMF7 engagement promoted cytotoxic lysis of target cells in response to stimulation with viral antigens. CD8+ T cell activation in response to viral antigens is defective in SLE patients. Activation of SLAMF7 through a specific monoclonal antibody restores CD8+ T cell antiviral effector function to normal levels and thus represents a potential therapeutic option in SLE

    Brief Report: CD4+ T Cells From Patients With Systemic Lupus Erythematosus Respond Poorly to Exogenous Interleukin-2.

    No full text
    Imbalanced cytokine production by T cells characterizes both patients with systemic lupus erythematosus (SLE) and lupus-prone mice and contributes to immune dysregulation. This study was undertaken to further investigate in detail the production of interleukin-2 (IL-2), interferon-γ (IFNγ), IL-4, and IL-17A by CD4+ cell subsets in healthy subjects and patients with SLE, and the signaling response of CD4+ T cells in response to exogenous IL-2. Cytokine production by differentiated subsets of CD4+ T cells was assessed by intracellular staining following stimulation with phorbol myristate acetate and ionomycin and by enzyme-linked immunosorbent assay after anti-CD3/anti-CD28 stimulation. The IL-2 signaling pathway was examined by assessing JAK-3/STAT-5 phosphorylation. Cell proliferation in response to IL-2 was examined by carboxyfluorescein succinimidyl ester dilution. Production of IL-2 was defective primarily among naive CD4+ T cells, whereas the production of IFNγ, IL-4, and IL-17A was not significantly different between patients with SLE and healthy subjects. JAK-3/STAT-5 phosphorylation and proliferation of CD4+ T cells from SLE patients in response to exogenous IL-2 were impaired compared to cells from healthy subjects. These data suggest that altered IL-2 production, as well as impaired IL-2-mediated signaling and proliferative responses, characterize SLE CD4+ T cells. Our data demonstrate the need for caution in designing IL-2 treatment trials for patients with SLE. Approaches to restore CD4+ T cell sensitivity to IL-2 should be considered

    Engagement of SLAMF3 enhances CD4+ T-cell sensitivity to IL-2 and favors regulatory T-cell polarization in systemic lupus erythematosus.

    No full text
    Signaling lymphocytic activation molecule family 3 (SLAMF3/Ly9) is a coregulatory molecule implicated in T-cell activation and differentiation. Systemic lupus erythematosus (SLE) is characterized by aberrant T-cell activation and compromised IL-2 production, leading to abnormal regulatory T-cell (Treg) development/function. Here we show that SLAMF3 functions as a costimulator on CD4(+) T cells and influences IL-2 response and T helper cell differentiation. SLAMF3 ligation promotes T-cell responses to IL-2 via up-regulation of CD25 in a small mothers against decapentaplegic homolog 3 (Smad3)-dependent mechanism. This augments the activation of the IL-2/IL-2R/STAT5 pathway and enhances cell proliferation in response to exogenous IL-2. SLAMF3 costimulation promotes Treg differentiation from naïve CD4(+) T cells. Ligation of SLAMF3 receptors on SLE CD4(+) T cells restores IL-2 responses to levels comparable to those seen in healthy controls and promotes functional Treg generation. Taken together, our results suggest that SLAMF3 acts as potential therapeutic target in SLE patients by augmenting sensitivity to IL-2

    Expression patterns of signaling lymphocytic activation molecule family members in peripheral blood mononuclear cell subsets in patients with systemic lupus erythematosus

    Get PDF
    Genome-wide linkage analysis studies (GWAS) studies in systemic lupus erythematosus (SLE) identified the 1q23 region on human chromosome 1, containing the Signaling Lymphocytic Activation Molecule Family (SLAMF) cluster of genes, as a lupus susceptibility locus. The SLAMF molecules (SLAMF1-7) are immunoregulatory receptors expressed predominantly on hematopoietic cells. Activation of cells of the adaptive immune system is aberrant in SLE and dysregulated expression of certain SLAMF molecules has been reported. We examined the expression of SLAMF1-7 on peripheral blood T cells, B cells, monocytes, and their respective differentiated subsets, in patients with SLE and healthy controls in a systematic manner. SLAMF1 levels were increased on both T cell and B cells and their differentiated subpopulations in patients with SLE. SLAMF2 was increased on SLE CD4+ and CD8+ T cells. The frequency of SLAMF4+ and SLAMF7+ central memory and effector memory CD8+ T cells was reduced in SLE patients. Naïve CD4+ and CD8+ SLE T cells showed a slight increase in SLAMF3 levels. No differences were seen in the expression of SLAMF5 and SLAMF6 among SLE patients and healthy controls. Overall, the expression of various SLAMF receptors is dysregulated in SLE and may contribute to the immunopathogenesis of the disease
    corecore