10 research outputs found

    Hispidulin Ameliorates Endotoxin-Induced Acute Kidney Injury in Mice

    No full text
    Lipopolysaccharide (LPS) is an endotoxin that plays a crucial role in septic acute kidney injury (AKI). Hispidulin is a natural flavonoid that possesses various biological activities. Recent studies have shown that hispidulin administration alleviates various inflammatory diseases in animal models. This study aimed to investigate the renoprotective effect of hispidulin on LPS-induced AKI. Male C57BL/6 mice were administered LPS (10 mg/kg) with or without hispidulin (50 mg/kg). Hispidulin administration attenuated renal dysfunction, histological alterations, and the upregulation of neutrophil gelatinase-associated lipocalin. This flavonoid also reduced cytokine production and Toll-like receptor 4 expression, inhibited nuclear factor-κB and mitogen-activated protein kinase cascades, and alleviated immune cell infiltration. The oxidation of lipids and DNA was also inhibited by hispidulin administration. This antioxidant effect of hispidulin was associated with the downregulation of NADPH oxidase 4, the activation of catalase and superoxide dismutase activities, and the restoration of glutathione levels. Moreover, hispidulin administration attenuated tubular cell apoptosis by inhibiting caspase-3 pathway. These data suggest that hispidulin ameliorates endotoxin-induced kidney injury by suppressing inflammation, oxidative stress, and tubular cell death

    Melatonin Inhibits Transforming Growth Factor-β1-Induced Epithelial–Mesenchymal Transition in AML12 Hepatocytes

    No full text
    Recent studies showed that melatonin, a well-known pineal hormone that modulates the circadian rhythm, exerts beneficial effects against liver fibrosis. However, mechanisms for its protective action against the fibrotic processes remain incompletely understood. Here, we aimed to explore the effects of the hormone on transforming growth factor-β1 (TGF-β1)-stimulated epithelial–mesenchymal transition (EMT) in AML12 hepatocytes. Pretreatment with melatonin dose-dependently reversed downregulation of an epithelial marker and upregulation of mesenchymal markers after TGF-β1 stimulation. Additionally, melatonin dose-dependently suppressed an increased phosphorylation of Smad2/3 after TGF-β1 treatment. Besides the canonical Smad signaling pathway, an increase in phosphorylation of extracellular signal-regulated kinase 1/2 and p38 was also dose-dependently attenuated by melatonin. The suppressive effect of the hormone on EMT stimulated by TGF-β1 was not affected by luzindole, an antagonist of melatonin membrane receptors, suggesting that its membrane receptors are not required for the inhibitory action of melatonin. Moreover, melatonin suppressed elevation of intracellular reactive oxygen species (ROS) levels in TGF-β1-treated cells. Finally, TGF-β1-stimulated EMT was also inhibited by the antioxidant N-acetylcysteine. Collectively, these results suggest that melatonin prevents TGF-β1-stimulated EMT through suppression of Smad and mitogen-activated protein kinase signaling cascades by deactivating ROS-dependent mechanisms in a membrane receptor-independent manner

    Eupatilin Ameliorates Lipopolysaccharide-Induced Acute Kidney Injury by Inhibiting Inflammation, Oxidative Stress, and Apoptosis in Mice

    No full text
    Acute kidney injury (AKI) is a common complication of sepsis. Eupatilin (EUP) is a natural flavone with multiple biological activities and has beneficial effects against various inflammatory disorders. However, whether EUP has a favorable effect on septic AKI remains unknown. Here, we examined the effect of EUP on lipopolysaccharide (LPS)-evoked AKI in mice. LPS-evoked renal dysfunction was attenuated by EUP, as reflected by reductions in serum creatinine and blood urea nitrogen levels. LPS injection also induced structural damage such as tubular cell detachment, tubular dilatation, brush border loss of proximal tubules, and upregulation of tubular injury markers. However, EUP significantly ameliorated this structural damage. EUP decreased serum and renal cytokine levels, prevented macrophage infiltration, and inhibited mitogen-activated protein kinase and NF-κB signaling cascades. Lipid peroxidation and DNA oxidation were increased after LPS treatment. However, EUP mitigated LPS-evoked oxidative stress through downregulation of NPDPH oxidase 4 and upregulation of antioxidant enzymes. EUP also inhibited p53-mediated apoptosis in LPS-treated mice. Therefore, these results suggest that EUP ameliorates LPS-evoked AKI through inhibiting inflammation, oxidative stress, and apoptosis

    Pharmacological inhibition of p300 ameliorates steatosis, inflammation, and fibrosis in mice with non-alcoholic steatohepatitis

    No full text
    The histone acetyltransferase p300 plays a pivotal role in regulating gene expression and cellular phenotype through epigenetic mechanisms. It significantly influences lipid metabolism, which is a key factor in the pathogenesis of non-alcoholic steatohepatitis (NASH), by modulating the transcription of genes involved in lipid synthesis and accumulation. This study aimed to investigate the protective potential of inhibiting p300 in NASH. Male C57BL/6J mice were subjected to a methionine- and choline-deficient (MCD) diet for 4 weeks to induce NASH, and during this period, the p300 inhibitor C646 (10 mg/kg) was administered three times a week. C646 treatment reduced the elevation of p300 expression and histone H3 acetylation, leading to a decrease in liver injury markers in the serum and an improvement in the histological abnormalities observed in MCD diet-fed mice. C646 also reduced lipid accumulation by modulating de novo lipogenesis and suppressed inflammation, including cytokine overproduction and macrophage infiltration. Furthermore, C646 mitigated liver fibrosis and myofibroblast accumulation. This protective effect was achieved through the inhibition of apoptosis by reducing p53 and Bax expression and the suppression of ferroptosis by decreasing lipid peroxidation while enhancing antioxidant defenses. Additionally, C646 alleviated endoplasmic reticulum stress, as evidenced by the downregulation of unfolded protein response signaling molecules. These results highlight the potential of p300 as a therapeutic target for NASH

    Pharmacological Inhibition of Caspase-1 Ameliorates Cisplatin-Induced Nephrotoxicity through Suppression of Apoptosis, Oxidative Stress, and Inflammation in Mice

    No full text
    Caspase-1 is a proinflammatory caspase responsible for the proteolytic conversion of the precursor forms of interleukin-1β to its active form and plays an important role in the pathogenesis of various inflammatory diseases. It was reported that genetic deficiency of caspase-1 prevented cisplatin-induced nephrotoxicity. However, whether pharmacological inhibition of caspase-1 also has a preventive effect against cisplatin-induced kidney injury has not been evaluated. In this study, we examined the effect of Ac-YVAD-cmk, a potent caspase-1-specific inhibitor, on renal function and histology in cisplatin-treated mice and explored its underlying mechanisms. We found that administration of Ac-YVAD-cmk effectively attenuated cisplatin-induced renal dysfunction, as evidenced by reduced plasma levels of blood urea nitrogen and creatinine, and histological abnormalities, such as tubular cell death, dilatation, and cast formation. Administration of Ac-YVAD-cmk inhibited caspase-3 activation as well as caspase-1 activation and attenuated apoptotic cell death, as assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling, in the kidneys of cisplatin-treated mice. Cisplatin-induced G2/M arrest of renal tubular cells was also reduced by caspase-1 inhibition. In addition, administration of Ac-YVAD-cmk reversed increased oxidative stress and depleted antioxidant capacity after cisplatin treatment. Moreover, increased macrophage accumulation and elevated expression of cytokines and chemokines were attenuated by caspase-1 inhibition. Taken together, these results suggest that caspase-1 inhibition by Ac-YVAD-cmk protects against cisplatin-induced nephrotoxicity through inhibition of renal tubular cell apoptosis, oxidative stress, and inflammatory responses. Our findings support the idea that caspase-1 may be a promising pharmacological target for the prevention of cisplatin-induced kidney injury

    Inhibitory Effect of Purpurogallin on Osteoclast Differentiation in Vitro through the Downregulation of c-Fos and NFATc1

    No full text
    Purpurogallin, a benzotropolone-containing natural compound, has been reported to exhibit numerous biological and pharmacological functions, such as antioxidant, anticancer, and anti-inflammatory effects. In this study, we enzymatically synthesized purpurogallin from pyrogallol and investigated its role in receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis. Purpurogallin attenuated the formation of multinucleated tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts from bone marrow macrophages (BMMs) without causing cytotoxicity, and suppressed upregulation of osteoclast-specific markers, including TRAP (Acp5), cathepsin K (Ctsk), and dendritic cell-specific transmembrane protein (Dcstamp). However, purpurogallin did not affect the bone resorbing function of mature osteoclasts evident by the resorption pit assay. Activation of mitogen-activated protein kinases, Akt and IkB pathways in RANK signaling were not altered by purpurogallin, whereas the expression of c-Fos and NFATc1, key transcriptional regulators in osteoclastogenesis, was dramatically inhibited by purpurogallin. Purpurogallin also significantly reduced the expression level of B lymphocyte-induced maturation protein-1 (Blimp1) gene (Prdm1). Further, downregulation of Blimp1 led to forced expression of anti-osteoclastogenic genes, including interferon regulatory factor-8 (Irf8) and B-cell lymphoma 6 (Bcl6) genes. Taken together, our data suggested that purpurogallin inhibits osteoclast differentiation via downregulation of c-Fos and NFATc1

    Protective Effect of Ciclopirox against Ovariectomy-Induced Bone Loss in Mice by Suppressing Osteoclast Formation and Function

    No full text
    Postmenopausal osteoporosis is closely associated with excessive osteoclast formation and function, resulting in the loss of bone mass. Osteoclast-targeting agents have been developed to manage this disease. We examined the effects of ciclopirox on osteoclast differentiation and bone resorption in vitro and in vivo. Ciclopirox significantly inhibited osteoclast formation from primary murine bone marrow macrophages (BMMs) in response to receptor activator of nuclear factor kappa B ligand (RANKL), and the expression of genes associated with osteoclastogenesis and function was decreased. The formation of actin rings and resorption pits was suppressed by ciclopirox. Analysis of RANKL-mediated early signaling events in BMMs revealed that ciclopirox attenuates IκBα phosphorylation without affecting mitogen-activated protein kinase activation. Furthermore, the administration of ciclopirox suppressed osteoclast formation and bone loss in ovariectomy-induced osteoporosis in mice and reduced serum levels of osteocalcin and C-terminal telopeptide fragment of type I collagen C-terminus. These results indicate that ciclopirox exhibits antiosteoclastogenic activity both in vitro and in vivo and represents a new candidate compound for protection against osteoporosis and other osteoclast-related bone diseases

    Metastable hexagonal close-packed palladium hydride in liquid cell TEM

    No full text
    Metastable phases-kinetically favoured structures-are ubiquitous in nature1,2. Rather than forming thermodynamically stable ground-state structures, crystals grown from high-energy precursors often initially adopt metastable structures depending on the initial conditions, such as temperature, pressure or crystal size1,3,4. As the crystals grow further, they typically undergo a series of transformations from metastable phases to lower-energy and ultimately energetically stable phases1,3,4. Metastable phases sometimes exhibit superior physicochemical properties and, hence, the discovery and synthesis of new metastable phases are promising avenues for innovations in materials science1,5. However, the search for metastable materials has mainly been heuristic, performed on the basis of experiences, intuition or even speculative predictions, namely 'rules of thumb'. This limitation necessitates the advent of a new paradigm to discover new metastable phases based on rational design. Such a design rule is embodied in the discovery of a metastable hexagonal close-packed (hcp) palladium hydride (PdHx) synthesized in a liquid cell transmission electron microscope. The metastable hcp structure is stabilized through a unique interplay between the precursor concentrations in the solution: a sufficient supply of hydrogen (H) favours the hcp structure on the subnanometre scale, and an insufficient supply of Pd inhibits further growth and subsequent transition towards the thermodynamically stable face-centred cubic structure. These findings provide thermodynamic insights into metastability engineering strategies that can be deployed to discover new metastable phases. © 2022. The Author(s), under exclusive licence to Springer Nature Limited.11Nsciescopu
    corecore