48 research outputs found

    The 3D Structure of N132D in the LMC: A Late-Stage Young Supernova Remnant

    Full text link
    We have used the Wide Field Spectrograph (WiFeS) on the 2.3m telescope at Siding Spring Observatory to map the [O III] 5007{\AA} dynamics of the young oxygen-rich supernova remnant N132D in the Large Magellanic Cloud. From the resultant data cube, we have been able to reconstruct the full 3D structure of the system of [O III] filaments. The majority of the ejecta form a ring of ~12pc in diameter inclined at an angle of 25 degrees to the line of sight. We conclude that SNR N132D is approaching the end of the reverse shock phase before entering the fully thermalized Sedov phase of evolution. We speculate that the ring of oxygen-rich material comes from ejecta in the equatorial plane of a bipolar explosion, and that the overall shape of the SNR is strongly influenced by the pre-supernova mass loss from the progenitor star. We find tantalizing evidence of a polar jet associated with a very fast oxygen-rich knot, and clear evidence that the central star has interacted with one or more dense clouds in the surrounding ISM.Comment: Accepted for Publication in Astrophysics & Space Science, 18pp, 8 figure

    Displaying the Heterogeneity of the SN 2002cx-like Subclass of Type Ia Supernovae with Observations of the Pan-STARRS-1 Discovered SN2009ku

    Full text link
    SN2009ku, discovered by Pan-STARRS-1, is a Type Ia supernova (SNIa), and a member of the distinct SN2002cx-like class of SNeIa. Its light curves are similar to the prototypical SN2002cx, but are slightly broader and have a later rise to maximum in g. SN2009ku is brighter (~0.6 mag) than other SN2002cx-like objects, peaking at M_V = -18.4 mag - which is still significantly fainter than typical SNeIa. SN2009ku, which had an ejecta velocity of ~2000 kms^-1 at 18 days after maximum brightness is spectroscopically most similar to SN2008ha, which also had extremely low-velocity ejecta. However, SN2008ha had an exceedingly low luminosity, peaking at M_V = -14.2 mag, ~4 mag fainter than SN2009ku. The contrast of high luminosity and low ejecta velocity for SN2009ku is contrary to an emerging trend seen for the SN2002cx class. SN2009ku is a counter-example of a previously held belief that the class was more homogeneous than typical SNeIa, indicating that the class has a diverse progenitor population and/or complicated explosion physics. As the first example of a member of this class of objects from the new generation of transient surveys, SN2009ku is an indication of the potential for these surveys to find rare and interesting objects.Comment: 7 pages, 3 figure

    The Crossing Statistic: Dealing with Unknown Errors in the Dispersion of Type Ia Supernovae

    Full text link
    We propose a new statistic that has been designed to be used in situations where the intrinsic dispersion of a data set is not well known: The Crossing Statistic. This statistic is in general less sensitive than `chi^2' to the intrinsic dispersion of the data, and hence allows us to make progress in distinguishing between different models using goodness of fit to the data even when the errors involved are poorly understood. The proposed statistic makes use of the shape and trends of a model's predictions in a quantifiable manner. It is applicable to a variety of circumstances, although we consider it to be especially well suited to the task of distinguishing between different cosmological models using type Ia supernovae. We show that this statistic can easily distinguish between different models in cases where the `chi^2' statistic fails. We also show that the last mode of the Crossing Statistic is identical to `chi^2', so that it can be considered as a generalization of `chi^2'.Comment: 14 pages, 5 figures. Paper restructured and extended and new interpretation of the method presented. New results concerning model selection. Treatment and error-analysis made fully model independent. References added. Accepted for publication in JCA

    Higher Dimensional Dark Energy Investigation with Variable Λ\Lambda and GG

    Full text link
    Time variable Λ\Lambda and GG are studied here under a phenomenological model of Λ\Lambda through an (n+2n+2) dimensional analysis. The relation of Zeldovich (1968) ∣Λ∣=8πG2mp6/h4|\Lambda| = 8\pi G^2m_p^6/h^4 between Λ\Lambda and GG is employed here, where mpm_p is the proton mass and hh is Planck's constant. In the present investigation some key issues of modern cosmology, viz. the age problem, the amount of variation of GG and the nature of expansion of the Universe have been addressed.Comment: 7 Latex pages with few change

    Selection of Burst-like Transients and Stochastic Variables Using Multi-band Image Differencing in the PAN-STARRS1 Medium-deep Survey

    Get PDF
    We present a novel method for the light-curve characterization of Pan-STARRS1 Medium Deep Survey (PS1 MDS) extragalactic sources into stochastic variables (SVs) and burst-like (BL) transients, using multi-band image-differencing time-series data. We select detections in difference images associated with galaxy hosts using a star/galaxy catalog extracted from the deep PS1 MDS stacked images, and adopt a maximum a posteriori formulation to model their difference-flux time-series in four Pan-STARRS1 photometric bands g P1, r P1, i P1, and z P1. We use three deterministic light-curve models to fit BL transients; a Gaussian, a Gamma distribution, and an analytic supernova (SN) model, and one stochastic light-curve model, the Ornstein-Uhlenbeck process, in order to fit variability that is characteristic of active galactic nuclei (AGNs). We assess the quality of fit of the models band-wise and source-wise, using their estimated leave-out-one cross-validation likelihoods and corrected Akaike information criteria. We then apply a K-means clustering algorithm on these statistics, to determine the source classification in each band. The final source classification is derived as a combination of the individual filter classifications, resulting in two measures of classification quality, from the averages across the photometric filters of (1) the classifications determined from the closest K-means cluster centers, and (2) the square distances from the clustering centers in the K-means clustering spaces. For a verification set of AGNs and SNe, we show that SV and BL occupy distinct regions in the plane constituted by these measures. We use our clustering method to characterize 4361 extragalactic image difference detected sources, in the first 2.5 yr of the PS1 MDS, into 1529 BL, and 2262 SV, with a purity of 95.00% for AGNs, and 90.97% for SN based on our verification sets. We combine our light-curve classifications with their nuclear or off-nuclear host galaxy offsets, to define a robust photometric sample of 1233 AGNs and 812 SNe. With these two samples, we characterize their variability and host galaxy properties, and identify simple photometric priors that would enable their real-time identification in future wide-field synoptic survey

    DT/T beyond linear theory

    Full text link
    The major contribution to the anisotropy of the temperature of the Cosmic Microwave Background (CMB) radiation is believed to come from the interaction of linear density perturbations with the radiation previous to the decoupling time. Assuming a standard thermal history for the gas after recombination, only the gravitational field produced by the linear density perturbations present on a Ω≠1\Omega\neq 1 universe can generate anisotropies at low z (these anisotropies would manifest on large angular scales). However, secondary anisotropies are inevitably produced during the nonlinear evolution of matter at late times even in a universe with a standard thermal history. Two effects associated to this nonlinear phase can give rise to new anisotropies: the time-varying gravitational potential of nonlinear structures (Rees-Sciama RS effect) and the inverse Compton scattering of the microwave photons with hot electrons in clusters of galaxies (Sunyaev-Zeldovich SZ effect). These two effects can produce distinct imprints on the CMB temperature anisotropy. We discuss the amplitude of the anisotropies expected and the relevant angular scales in different cosmological scenarios. Future sensitive experiments will be able to probe the CMB anisotropies beyong the first order primary contribution.Comment: plain tex, 16 pages, 3 figures. Proceedings of the Laredo Advance School on Astrophysics "The universe at high-z, large-scale structure and the cosmic microwave background". To be publised by Springer-Verla

    Scenario of Accelerating Universe from the Phenomenological \Lambda- Models

    Full text link
    Dark matter, the major component of the matter content of the Universe, played a significant role at early stages during structure formation. But at present the Universe is dark energy dominated as well as accelerating. Here, the presence of dark energy has been established by including a time-dependent Λ\Lambda term in the Einstein's field equations. This model is compatible with the idea of an accelerating Universe so far as the value of the deceleration parameter is concerned. Possibility of a change in sign of the deceleration parameter is also discussed. The impact of considering the speed of light as variable in the field equations has also been investigated by using a well known time-dependent Λ\Lambda model.Comment: Latex, 9 pages, Major change

    Selecting superluminous supernovae in faint galaxies from the first year of the Pan-STARRS1 Medium Deep Survey

    Get PDF
    The Pan-STARRS1 (PS1) survey has obtained imaging in five bands (griz yP1) over 10 Medium Deep Survey (MDS) fields covering a total of 70 square degrees. This paper describes the search for apparently hostless supernovae (SNe) within the first year of PS1 MDS data with an aim of discovering superluminous supernovae (SLSNe). A total of 249 hostless transients were discovered down to a limiting magnitude of MAB ∼ 23.5, of which 76 were classified as Type Ia supernovae (SNe Ia). There were 57 SNe with complete light curves that are likely core-collapse SNe (CCSNe) or type Ic SLSNe and 12 of these have had spectra taken. Of these 12 hostless, non-Type Ia SNe, 7 were SLSNe of type Ic at redshifts between 0.5 and 1.4. This illustrates that the discovery rate of type Ic SLSNe can be maximized by concentrating on hostless transients and removing normal SNe Ia. We present data for two possible SLSNe; PS1-10pm (z = 1.206) and PS1-10ahf (z = 1.1), and estimate the rate of type Ic SLSNe to be between 3+3−2×10−5 and 8+2−1×10−5 that of the CCSN rate within 0.3 ≤ z ≤ 1.4 by applying a Monte Carlo technique. The rate of slowly evolving, type Ic SLSNe (such as SN2007bi) is estimated as a factor of 10 lower than this range

    Cosmological Constraints from Measurements of Type Ia Supernovae Discovered during the First 1.5 yr of the Pan-STARRS1 Survey

    Get PDF
    We present griz P1 light curves of 146 spectroscopically confirmed Type Ia supernovae (SNe Ia; 0.03 < z < 0.65) discovered during the first 1.5 yr of the Pan-STARRS1 Medium Deep Survey. The Pan-STARRS1 natural photometric system is determined by a combination of on-site measurements of the instrument response function and observations of spectrophotometric standard stars. We find that the systematic uncertainties in the photometric system are currently 1.2% without accounting for the uncertainty in the Hubble Space Telescope Calspec definition of the AB system. A Hubble diagram is constructed with a subset of 113 out of 146 SNe Ia that pass our light curve quality cuts. The cosmological fit to 310 SNe Ia (113 PS1 SNe Ia + 222 light curves from 197 low-z SNe Ia), using only supernovae (SNe) and assuming a constant dark energy equation of state and flatness, yields w=−1.120−0.206+0.360(Stat)−0.291+0.269(Sys)w=-1.120^{+0.360}_{-0.206}\hbox{(Stat)} ^{+0.269}_{-0.291}\hbox{(Sys)}. When combined with BAO+CMB(Planck)+H 0, the analysis yields ΩM=0.280−0.012+0.013\Omega _{\rm M}=0.280^{+0.013}_{-0.012} and w=−1.166−0.069+0.072w=-1.166^{+0.072}_{-0.069} including all identified systematics. The value of w is inconsistent with the cosmological constant value of –1 at the 2.3σ level. Tension endures after removing either the baryon acoustic oscillation (BAO) or the H 0 constraint, though it is strongest when including the H 0 constraint. If we include WMAP9 cosmic microwave background (CMB) constraints instead of those from Planck, we find w=−1.124−0.065+0.083w=-1.124^{+0.083}_{-0.065}, which diminishes the discord to <2σ. We cannot conclude whether the tension with flat ΛCDM is a feature of dark energy, new physics, or a combination of chance and systematic errors. The full Pan-STARRS1 SN sample with ~three times as many SNe should provide more conclusive results
    corecore