33 research outputs found

    Stereotactically guided breast biopsy: a review

    Get PDF
    The aims of this review are to compare and contrast the available stereotactic equipment, and to describe the variety of needle types used and their affect on pathological results and subsequent patient management. Initial stereotactic devices were “added-on” to analogue mammography units and have been replaced by prone or ducubitus equipment using digital image acquisition. Biopsies use either 14-G core biopsy (CB) needles or vacuum-assisted biopsies (VAB). Vacuum-assisted biopsy systems consistently out-perform 14-G CB with reduced need for diagnostic or multi-treatment surgery. The false-negative rate is 8% for 14-G CB compared with 0.7% for VAB. There is a risk of underestimating the disease present for lesions of uncertain malignant potential (Cat B3) and suspicious of malignancy (Cat B4) results with 25% of patients with a B3 biopsy found to have cancer at subsequent surgery and 66% of those with a B4 biopsy. A CB diagnosis of in situ malignancy is upgraded to invasive disease at surgery in 15-36% of patients undergoing CB and of the order of 10% with VAB. A high degree of diagnostic accuracy and hence safe patient care can only be achieved by meticulous attention to technique and multi-disciplinary cooperation

    Primary parotid gland lymphoma: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Mucosa associated lymphoid tissue lymphomas are the most common lymphomas of the salivary glands. The benign lymphoepithelial lesion is also a lymphoproliferative disease that develops in the parotid gland. In the present case report, we describe one case of benign lymphoepithelial lesion with a subsequent low transformation to grade mucosa associated lymphoid tissue lymphoma appearing as a cystic mass in the parotid gland.</p> <p>Case presentation</p> <p>A 78-year-old Caucasian female smoker was referred to our clinic with a non-tender left facial swelling that had been present for approximately three years. The patient underwent resection of the left parotid gland with preservation of the left facial nerve through a preauricular incision. The pathology report was consistent with a low-grade marginal-zone B-cell non-Hodgkin lymphoma (mucosa associated lymphoid tissue lymphoma) following benign lymphoepithelial lesion of the gland.</p> <p>Conclusions</p> <p>Salivary gland mucosa associated lymphoid tissue lymphoma should be considered in the differential diagnosis of cystic or bilateral salivary gland lesions. Parotidectomy is recommended in order to treat the tumor and to ensure histological diagnosis for further follow-up planning. Radiotherapy and chemotherapy should be considered in association with surgery in disseminated forms or after removal.</p

    In Vivo, In Vitro, and In Silico Characterization of Peptoids as Antimicrobial Agents

    Get PDF
    Bacterial resistance to conventional antibiotics is a global threat that has spurred the development of antimicrobial peptides (AMPs) and their mimetics as novel anti-infective agents. While the bioavailability of AMPs is often reduced due to protease activity, the non-natural structure of AMP mimetics renders them robust to proteolytic degradation, thus offering a distinct advantage for their clinical application. We explore the therapeutic potential of N-substituted glycines, or peptoids, as AMP mimics using a multi-faceted approach that includes in silico, in vitro, and in vivo techniques. We report a new QSAR model that we developed based on 27 diverse peptoid sequences, which accurately correlates antimicrobial peptoid structure with antimicrobial activity. We have identified a number of peptoids that have potent, broad-spectrum in vitro activity against multi-drug resistant bacterial strains. Lastly, using a murine model of invasive S. aureus infection, we demonstrate that one of the best candidate peptoids at 4 mg/kg significantly reduces with a two-log order the bacterial counts compared with saline-treated controls. Taken together, our results demonstrate the promising therapeutic potential of peptoids as antimicrobial agents

    Stable Isotope Biogeochemistry of Seabird Guano Fertilization: Results from Growth Chamber Studies with Maize (Zea Mays)

    Get PDF
    Stable isotope analysis is being utilized with increasing regularity to examine a wide range of issues (diet, habitat use, migration) in ecology, geology, archaeology, and related disciplines. A crucial component to these studies is a thorough understanding of the range and causes of baseline isotopic variation, which is relatively poorly understood for nitrogen (δ(15)N). Animal excrement is known to impact plant δ(15)N values, but the effects of seabird guano have not been systematically studied from an agricultural or horticultural standpoint.This paper presents isotopic (δ(13)C and δ(15)N) and vital data for maize (Zea mays) fertilized with Peruvian seabird guano under controlled conditions. The level of (15)N enrichment in fertilized plants is very large, with δ(15)N values ranging between 25.5 and 44.7‰ depending on the tissue and amount of fertilizer applied; comparatively, control plant δ(15)N values ranged between -0.3 and 5.7‰. Intraplant and temporal variability in δ(15)N values were large, particularly for the guano-fertilized plants, which can be attributed to changes in the availability of guano-derived N over time, and the reliance of stored vs. absorbed N. Plant δ(13)C values were not significantly impacted by guano fertilization. High concentrations of seabird guano inhibited maize germination and maize growth. Moreover, high levels of seabird guano greatly impacted the N metabolism of the plants, resulting in significantly higher tissue N content, particularly in the stalk.The results presented in this study demonstrate the very large impact of seabird guano on maize δ(15)N values. The use of seabird guano as a fertilizer can thus be traced using stable isotope analysis in food chemistry applications (certification of organic inputs). Furthermore, the fertilization of maize with seabird guano creates an isotopic signature very similar to a high-trophic level marine resource, which must be considered when interpreting isotopic data from archaeological material

    An NF-κB and Slug Regulatory Loop Active in Early Vertebrate Mesoderm

    Get PDF
    BACKGROUND: In both Drosophila and the mouse, the zinc finger transcription factor Snail is required for mesoderm formation; its vertebrate paralog Slug (Snai2) appears to be required for neural crest formation in the chick and the clawed frog Xenopus laevis. Both Slug and Snail act to induce epithelial to mesenchymal transition (EMT) and to suppress apoptosis. METHODOLOGY & PRINCIPLE FINDINGS: Morpholino-based loss of function studies indicate that Slug is required for the normal expression of both mesodermal and neural crest markers in X. laevis. Both phenotypes are rescued by injection of RNA encoding the anti-apoptotic protein Bcl-xL; Bcl-xL's effects are dependent upon IκB kinase-mediated activation of the bipartite transcription factor NF-κB. NF-κB, in turn, directly up-regulates levels of Slug and Snail RNAs. Slug indirectly up-regulates levels of RNAs encoding the NF-κB subunit proteins RelA, Rel2, and Rel3, and directly down-regulates levels of the pro-apopotic Caspase-9 RNA. CONCLUSIONS/SIGNIFICANCE: These studies reveal a Slug/Snail–NF-κB regulatory circuit, analogous to that present in the early Drosophila embryo, active during mesodermal formation in Xenopus. This is a regulatory interaction of significance both in development and in the course of inflammatory and metastatic disease

    Alternating Hemiplegia of Childhood-Related Neural and Behavioural Phenotypes in Na+,K+-ATPase α3 Missense Mutant Mice

    Get PDF
    Missense mutations in ATP1A3 encoding Na(+),K(+)-ATPase α3 have been identified as the primary cause of alternating hemiplegia of childhood (AHC), a motor disorder with onset typically before the age of 6 months. Affected children tend to be of short stature and can also have epilepsy, ataxia and learning disability. The Na(+),K(+)-ATPase has a well-known role in maintaining electrochemical gradients across cell membranes, but our understanding of how the mutations cause AHC is limited. Myshkin mutant mice carry an amino acid change (I810N) that affects the same position in Na(+),K(+)-ATPase α3 as I810S found in AHC. Using molecular modelling, we show that the Myshkin and AHC mutations display similarly severe structural impacts on Na(+),K(+)-ATPase α3, including upon the K(+) pore and predicted K(+) binding sites. Behavioural analysis of Myshkin mice revealed phenotypic abnormalities similar to symptoms of AHC, including motor dysfunction and cognitive impairment. 2-DG imaging of Myshkin mice identified compromised thalamocortical functioning that includes a deficit in frontal cortex functioning (hypofrontality), directly mirroring that reported in AHC, along with reduced thalamocortical functional connectivity. Our results thus provide validation for missense mutations in Na(+),K(+)-ATPase α3 as a cause of AHC, and highlight Myshkin mice as a starting point for the exploration of disease mechanisms and novel treatments in AHC
    corecore