22 research outputs found

    Implementing just climate adaptation policy: An analysis of recognition, framing, and advocacy coalitions in Boston, U.S.A.

    Get PDF
    Cities face intersectional challenges implementing climate adaptation policy. This research contributes to scholarship dedicated to understanding how policy implementation affects socially vulnerable groups, with the overarching goal of promoting justice and equity in climate policy implementation. We apply a novel framework that integrates social justice theory and the advocacy coalition framework to incrementally assess just climate adaptation in Boston, Massachusetts in the United States. Boston made an ambitious commitment to address equity as part of its climate planning and implementation efforts. In this paper, we evaluate the first implementation stage over the period 2016–2019 during which Boston developed coastal resilience plans for three neighborhoods. Despite Boston\u27s commitment to equity, we find injustice was nevertheless reproduced through representation and coalition dynamics, the framing of problems and solutions, and a failure to recognize the priorities and lived experiences of city residents. The assessment framework presented can be adapted to evaluate how other climate adaptation initiatives advance social justice and highlights the need for incremental evaluation over short time periods to inform ongoing implementation efforts

    Framework for sustained climate assessment in the United States

    Get PDF
    Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society, 100(5), (2019): 897-908, doi:10.1175/BAMS-D-19-0130.1.As states, cities, tribes, and private interests cope with climate damages and seek to increase preparedness and resilience, they will need to navigate myriad choices and options available to them. Making these choices in ways that identify pathways for climate action that support their development objectives will require constructive public dialogue, community participation, and flexible and ongoing access to science- and experience-based knowledge. In 2016, a Federal Advisory Committee (FAC) was convened to recommend how to conduct a sustained National Climate Assessment (NCA) to increase the relevance and usability of assessments for informing action. The FAC was disbanded in 2017, but members and additional experts reconvened to complete the report that is presented here. A key recommendation is establishing a new nonfederal “climate assessment consortium” to increase the role of state/local/tribal government and civil society in assessments. The expanded process would 1) focus on applied problems faced by practitioners, 2) organize sustained partnerships for collaborative learning across similar projects and case studies to identify effective tested practices, and 3) assess and improve knowledge-based methods for project implementation. Specific recommendations include evaluating climate models and data using user-defined metrics; improving benefit–cost assessment and supporting decision-making under uncertainty; and accelerating application of tools and methods such as citizen science, artificial intelligence, indicators, and geospatial analysis. The recommendations are the result of broad consultation and present an ambitious agenda for federal agencies, state/local/tribal jurisdictions, universities and the research sector, professional associations, nongovernmental and community-based organizations, and private-sector firms.This report would not have been possible without the support and participation of numerous organizations and individuals. We thank New York State Governor Andrew M. Cuomo for announcing in his 2018 State of the State agenda that the IAC would be reconvened. The New York State Energy Research and Development Authority (Contract ID 123416), Columbia University’s Earth Institute, and the American Meteorological Society provided essential financial support and much more, including sage advice and moral support from John O’Leary, Shara Mohtadi, Steve Cohen, Alex Halliday, Peter deMenocal, Keith Seitter, Paul Higgins, and Bill Hooke. We thank the attendees of a workshop, generously funded by the Kresge Foundation in November of 2017, that laid a foundation for the idea to establish a civil-society-based assessment consortium. During the course of preparing the report, IAC members consulted with individuals too numerous to list here—state, local, and tribal officials; researchers; experts in nongovernmental and community-based organizations; and professionals in engineering, architecture, public health, adaptation, and other areas. We are so grateful for their time and expertise. We thank the members and staff of the National Academy of Sciences, Engineering, and Medicine’s Committee to Advise the U.S. Global Change Research Program for providing individual comments on preliminary recommendations during several discussions in open sessions of their meetings. The following individuals provided detailed comments on an earlier version of this report, which greatly sharpened our thinking and recommendations: John Balbus, Tom Dietz, Phil Duffy, Baruch Fischhoff, Brenda Hoppe, Melissa Kenney, Linda Mearns, Claudia Nierenberg, Kathleen Segerson, Soroosh Sorooshian, Chris Weaver, and Brian Zuckerman. Mary Black provided insightful copy editing of several versions of the report. We also thank four anonymous reviewers for their effort and care in critiquing and improving the report. It is the dedication, thoughtful feedback, expertise, care, and commitment of all these people and more that not only made this report possible, but allow us all to continue to support smart and insightful actions in a changing climate. We are grateful as authors and as global citizens. Author contributions: RM, SA, KB, MB, AC, JD, PF, KJ, AJ, KK, JK, ML, JM, RP, TR, LS, JS, JW, and DZ were members of the IAC and shared in researching, discussing, drafting, and approving the report. BA, JF, AG, LJ, SJ, PK, RK, AM, RM, JN, WS, JS, PT, GY, and RZ contributed to specific sections of the report

    Evaluating knowledge to support climate action: A framework for sustained assessment. report of an independent advisory committee on applied climate assessment.

    Get PDF
    Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Weather Climate and Society 11(3), (2019):465-487, doi: 10.1175/WCAS-D-18-0134.1.As states, cities, tribes, and private interests cope with climate damages and seek to increase preparedness and resilience, they will need to navigate myriad choices and options available to them. Making these choices in ways that identify pathways for climate action that support their development objectives will require constructive public dialogue, community participation, and flexible and ongoing access to science- and experience-based knowledge. In 2016, a Federal Advisory Committee (FAC) was convened to recommend how to conduct a sustained National Climate Assessment (NCA) to increase the relevance and usability of assessments for informing action. The FAC was disbanded in 2017, but members and additional experts reconvened to complete the report that is presented here. A key recommendation is establishing a new nonfederal “climate assessment consortium” to increase the role of state/local/tribal government and civil society in assessments. The expanded process would 1) focus on applied problems faced by practitioners, 2) organize sustained partnerships for collaborative learning across similar projects and case studies to identify effective tested practices, and 3) assess and improve knowledge-based methods for project implementation. Specific recommendations include evaluating climate models and data using user-defined metrics; improving benefit–cost assessment and supporting decision-making under uncertainty; and accelerating application of tools and methods such as citizen science, artificial intelligence, indicators, and geospatial analysis. The recommendations are the result of broad consultation and present an ambitious agenda for federal agencies, state/local/tribal jurisdictions, universities and the research sector, professional associations, nongovernmental and community-based organizations, and private-sector firms.This report would not have been possible without the support and participation of numerous organizations and individuals. We thank New York State Governor Andrew M. Cuomo for announcing in his 2018 State of the State agenda that the IAC would be reconvened. The New York State Energy Research and Development Authority (Contract ID 123416), Columbia University’s Earth Institute, and the American Meteorological Society provided essential financial support and much more, including sage advice and moral support from John O’Leary, Shara Mohtadi, Steve Cohen, Alex Halliday, Peter deMenocal, Keith Seitter, Paul Higgins, and Bill Hooke. We thank the attendees of a workshop, generously funded by the Kresge Foundation in November of 2017, that laid a foundation for the idea to establish a civil-society-based assessment consortium. During the course of preparing the report, IAC members consulted with individuals too numerous to list here—state, local, and tribal officials; researchers; experts in nongovernmental and community-based organizations; and professionals in engineering, architecture, public health, adaptation, and other areas. We are so grateful for their time and expertise. We thank the members and staff of the National Academy of Sciences, Engineering, and Medicine’s Committee to Advise the U.S. Global Change Research Program for providing individual comments on preliminary recommendations during several discussions in open sessions of their meetings. The following individuals provided detailed comments on an earlier version of this report, which greatly sharpened our thinking and recommendations: John Balbus, Tom Dietz, Phil Duffy, Baruch Fischhoff, Brenda Hoppe, Melissa Kenney, Linda Mearns, Claudia Nierenberg, Kathleen Segerson, Soroosh Sorooshian, Chris Weaver, and Brian Zuckerman. Mary Black provided insightful copy editing of several versions of the report. We also thank four anonymous reviewers for their effort and care in critiquing and improving the report. It is the dedication, thoughtful feedback, expertise, care, and commitment of all these people and more that not only made this report possible, but allow us all to continue to support smart and insightful actions in a changing climate. We are grateful as authors and as global citizens. Author contributions: RM, SA, KB, MB, AC, JD, PF, KJ, AJ, KK, JK, ML, JM, RP, TR, LS, JS, JW, and DZ were members of the IAC and shared in researching, discussing, drafting, and approving the report. BA, JF, AG, LJ, SJ, PK, RK, AM, RM, JN, WS, JS, PT, GY, and RZ contributed to specific sections of the report.2020-05-2

    Considering Climate Change in Road and Building Design

    No full text
    What is the role of climate in infrastructure design? How can engineers design for a changing climate? How can climate scientists better inform the design process? These were the questions posed at the first Infrastructure and Climate Network (ICNet) Steering Committee Workshop, which was sponsored by a U.S. National Science Foundation research grant (CBET‐1231326) from the Research Coordination Networks‐Science, Engineering and Education for Sustainability (RCN‐SEES) program

    Adaptation Planning to Mitigate Coastal-Road Pavement Damage from Groundwater Rise Caused by Sea-Level Rise

    No full text
    Sea level in coastal New England is projected to rise 3.9–6.6 ft (1.2–2.0 m) by the year 2100. Many climate-change vulnerability and adaptation studies have investigated surface-water flooding from sea-level rise (SLR) on coastal-road infrastructure, but few have focused on rising groundwater. Groundwater modeling in New Hampshire’s Seacoast Region has shown that SLR-induced groundwater rise will occur three to four times farther inland than surface-water flooding, potentially impacting 23% of the region’s roads. Pavement service-life has been shown to decrease when the unbound layers become saturated. In areas where groundwater is projected to rise with SLR, pavements with groundwater 5.0 ft (1.5 m) deep or less are at risk of premature failure as groundwater moves into the pavement’s underlying unbound layers. In this study, groundwater hydrology and multi-layer elastic pavement analysis were used to identify two case-study sites in coastal New Hampshire that are predicted to experience pavement service-life reduction caused by SLR-induced groundwater rise. Various pavement structures were evaluated to determine adaptation feasibility and costs to maintain the designed service-life in the face of rising groundwater. This investigation shows that relatively simple pavement structural modifications to the base and asphalt concrete (AC) layers of a regional corridor can eliminate the 80% to 90% service-life reduction projected with 1.0 ft SLR (year 2030) and will delay pavement inundation by 20 years. Pavements with adequate base-layer materials and thickness require only AC thickness modification to avoid premature pavement failure from SLR-induced groundwater rise. Sea-level rise (SLR) can cause erosion and storm-surge damage, flood coastal communities, and damage coastal infrastructure (1). Many studies have investigated SLR-induced surface-water flooding and storm surge on road infrastructure (2, 3) but few have investigated the effect of SLR-induced groundwater rise on coastal-road pavement systems. As groundwater rises, the unsaturated zone decreases (4) and groundwater will impact roads, septic systems, underground utilities, and foundations in areas where the groundwater is currently near the ground surface (5). The effect of rising groundwater on pavement performance has been investigated. Full-scale pavement tests conducted in Florida test pits found a more than 50% reduction in the resilient modulus of granular subgrade layers when the groundwater table rises 24 in. (61 cm) to the bottom of the base layer (6). A study of SLR and increased precipitation on roads along the Gold Coast in Australia found that approximately 1.9 miles (3.0 km) (32%) of roadway will be at high risk of failure by 2070 when groundwater is predicted to be less than 3.3 ft (1.0 m) below the pavement surface (7). Similarly, SLR-induced groundwater rise was found to reduce coastal-road pavement life by 50% from fatigue-cracking distress, and by up to 90% from rutting distress when groundwater moves into the pavement base layers (8). Climate-change adaptation studies assess the vulnerability of assets, choose appropriate climate-change scenarios, identify adaptation strategies, and recommend actions that may be robust or flexible (9). Studies have shown that some pavement structures are more resilient to rising groundwater than others (10, 11), but to date, no studies have quantified the cost and benefits of strategies to mitigate pavement impacts from SLR-induced groundwater rise. The implementation of targeted adaptation actions to vulnerable coastal-road infrastructure will save money through damage avoidance (8). The objective of this research was to identify pavement structures that will preserve pavement service-life in the face of SLR-induced groundwater rise. It provides a quantitative assessment of pavement strains for projected groundwater levels and compares service-life reductions in terms of fatigue and rutting across different pavement structures. Pavement construction costs and road-surface elevations were evaluated to determine cost-effective strategies to prevent premature pavement failure as rising groundwater weakens the pavement supporting layers and inundates the pavement surface. Whereas rising temperatures may also weaken pavements (12), this investigation considered only the effects of SLR-induced groundwater rise on pavement service-life. Fatigue cracking and rutting were evaluated independently, and it was assumed that no pre-existing distresses existed in the pavement evaluation sites. In reality, these distresses are coupled and exist to some degree in the pavement structure; consequently, pavement failure will likely occur sooner than predicted in this analysis. SLR-induced groundwater-rise projections are limited to the SLR scenarios chosen for this study
    corecore