23 research outputs found

    Π’Π˜Π‘Π†Π  ΠœΠ†ΠΠ†ΠœΠΠ›Π¬ΠΠžΠ“Πž РАДІУБУ ΠšΠ Π˜Π’Π˜Π₯ ПРИ ΠŸΠ ΠžΠ•ΠšΠ’Π£Π’ΠΠΠΠ† Π’Π˜Π‘ΠžΠšΠžΠ¨Π’Π˜Π”ΠšΠ†Π‘ΠΠ˜Π₯ Π—ΠΠ›Π†Π—ΠΠ˜Π¦Π¬

    No full text
    In article foreign norms of designing of high-speed railways and influence of the minimal radius of a curve on cost indexes of a line are examined. Recommendations on application of those or other norms are given.Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡ Π·Π°Ρ€ΡƒΠ±Π΅ΠΆΠ½Ρ‹Π΅ Π½ΠΎΡ€ΠΌΡ‹ проСктирования высокоскоростных ΠΆΠ΅Π»Π΅Π·Π½Ρ‹Ρ… Π΄ΠΎΡ€ΠΎΠ³ ΠΈ влияниС минимального радиуса ΠΊΡ€ΠΈΠ²ΠΎΠΉ Π½Π° стоимостныС ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ трассы. Π”Π°ΡŽΡ‚ΡΡ Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°Ρ†ΠΈΠΈ ΠΏΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡŽ Ρ‚Π΅Ρ… ΠΈΠ»ΠΈ ΠΈΠ½Ρ‹Ρ… Π½ΠΎΡ€ΠΌΠ£ статті Ρ€ΠΎΠ·Π³Π»ΡΠ΄Π°ΡŽΡ‚ΡŒΡΡ Π·Π°Ρ€ΡƒΠ±Ρ–ΠΆΠ½Ρ– Π½ΠΎΡ€ΠΌΠΈ проСктування Π²ΠΈΡΠΎΠΊΠΎΡˆΠ²ΠΈΠ΄ΠΊΡ–ΡΠ½ΠΈΡ… Π·Π°Π»Ρ–Π·Π½ΠΈΡ†ΡŒ Ρ– Π²ΠΏΠ»ΠΈΠ² ΠΌΡ–Π½Ρ–ΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ радіуса ΠΊΡ€ΠΈΠ²ΠΎΡ— Π½Π° вартісні ΠΏΠΎΠΊΠ°Π·Π½ΠΈΠΊΠΈ траси. Π”Π°ΡŽΡ‚ΡŒΡΡ Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°Ρ†Ρ–Ρ— Ρ‰ΠΎΠ΄ΠΎ застосування Ρ‚ΠΈΡ… Ρ‡ΠΈ Ρ–Π½ΡˆΠΈΡ… Π½ΠΎΡ€ΠΌ

    Absorption coefficient and site-specific mass absorption efficiency of elemental carbon in aerosols over urban, rural, and high-altitude sites in India

    No full text
    Temporal and spatial variability in the absorption coefficient (b<SUB>abs</SUB>, Mm<SUP>-1</SUP>) and mass absorption efficiency (MAE, Οƒ<SUB>abs</SUB>, m<SUP>2</SUP>g<SUP>-1</SUP>) of elemental carbon (EC) in atmospheric aerosols studied from urban, rural, and high-altitude sites is reported here. Ambient aerosols, collected on tissuquartz filters, are analyzed for EC mass concentration using thermo-optical EC-OC analyzer, wherein simultaneously measured optical-attenuation (ATN, equivalent to initial transmittance) of 678 nm laser source has been used for the determination of MAE and absorption coefficient. At high-altitude sites, measured ATN and surface EC loading (EC<SUB>s</SUB>, ΞΌg cm<SUP>-2</SUP>) on the filters exhibit linear positive relationship (R<SUP>2</SUP> = 0.86-0.96), suggesting EC as a principal absorbing component. However, relatively large scatter in regression analyses for the data from urban sites suggests contribution from other species. The representative MAE of EC, during wintertime (Dec 2004), at a rural site (Jaduguda) is 6.1 Β± 2.0 m<SUP>2</SUP>g<SUP>-1</SUP>. In contrast, MAE at the two high-altitude sites is 14.5 Β± 1.1 (Manora Peak) and 10.4 Β± 1.4 (Mt. Abu); and that at urban sites is 11.1 Β± 2.6 (Allahabad) and 11.3 Β± 2.2 m<SUP>2</SUP>g<SUP>-1</SUP> (Hisar). The long-term average MAE at Manora Peak (February 2005 to June 2007) is 12.8 Β± 2.9 m<SUP>2</SUP>g<SUP>-1</SUP> (range: 6.1-19.1 m<SUP>2</SUP>g<SUP>-1</SUP>). These results are unlike the constant conversion factor used for MAE in optical instruments for the determination of BC mass concentration. The absorption coefficient also shows large spatiotemporal variability; the lower values are typical of the high-altitude sites and higher values for the urban and rural atmosphere. Such large variability documented for the absorption parameters suggests the need for their suitable parametrization in the assessment of direct aerosol radiative forcing on a regional scale

    Spatio-temporal variability in atmospheric abundances of EC, OC and WSOC over Northern India

    No full text
    The atmospheric abundances of elemental carbon (EC), organic carbon (OC) and water-soluble organic carbon (WSOC) have been measured in aerosol samples collected during wintertime (December-March) from selected sites (urban, rural and high-altitude) in northern India. A characteristic feature of their abundance pattern, at urban sites, is reflected in the OC/EC ratios (range: 2.4-14.5, Av=7.8Β±2.4, n=77) indicating dominant contribution from biomass burning sources (wood-fuel and agriculture waste). This is in sharp contrast to the OC/EC ratios at a rural site (range: 2.1-4.0, Av=3.1Β±0.6, n=7) influenced by emissions from coal-fired industries. The long-term measurements made from a high-altitude site (~2000 m amsl) reveal significantly lower abundances of EC and OC; suggesting that boundary layer dynamics (during wintertime) play an important role in efficient trapping of pollutants within the Indo-Gangetic Plain (northern India). The WSOC/OC ratios are fairly uniform (~0.35) in aerosols over urban sites but relatively enhanced contribution of WSOC and higher ratios (~0.5) at a high-altitude site emphasizes the significance of secondary organic aerosols. The comprehensive data set on EC, OC and WSOC/OC ratios from northern India is crucial to improve model parameterization of carbonaceous aerosols for atmospheric scattering and absorption of solar radiation on a regional scale

    ΠŸΠ΅Ρ€Π΅Π΄Π½Ρ–ΠΉ Π·Π°ΠΎΡ‡Π΅Ρ€Π΅Π²ΠΈΠ½Π½ΠΈΠΉ ΠΌΡ–ΠΆΡ‚Ρ–Π»ΠΎΠ²ΠΈΠΉ ΠΊΠΎΡ€ΠΏΠΎΡ€ΠΎΠ΄Π΅Π· Π½Π° Π½ΠΈΠΆΠ½ΡŒΠΎΠΏΠΎΠΏΠ΅Ρ€Π΅ΠΊΠΎΠ²ΠΎΠΌΡƒ Ρ€Ρ–Π²Π½Ρ–

    No full text
    14 cases of various pathology of inferior lumbar spine treatment results were analyzed. The anterior interbody fusion has been performed at all patients using cylindrical titanium implant of container type. Retroperitoneal surgical approach to lumbar spine, spinal decompression and further stabilization were described in details. It was found out that proposed method of dural sack and neural roots decompression is more effective than posterior approach technique. Good functional outcome was achieved in all cases. The described method was recommended at spondilolystesis of I–II degree, large posteromedial hernias. The method is most effective at patients with recurrent posteromedial hernias with severe scarring of anterior extradural space.ΠŸΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ лСчСния 14 Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… ΠΏΠΎ ΠΏΠΎΠ²ΠΎΠ΄Ρƒ Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΉ ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠΈ ниТнСпоясничного ΠΎΡ‚Π΄Π΅Π»Π° ΠΏΠΎΠ·Π²ΠΎΠ½ΠΎΡ‡Π½ΠΈΠΊΠ°. ВсСм Π±ΠΎΠ»ΡŒΠ½Ρ‹ΠΌ осущСствлСн ΠΏΠ΅Ρ€Π΅Π΄Π½ΠΈΠΉ ΠΌΠ΅ΠΆΡ‚Π΅Π»ΠΎΠ²ΠΎΠΉ ΠΊΠΎΡ€ΠΏΠΎΡ€ΠΎΠ΄Π΅Π·, установлСн цилиндричСский Ρ‚ΠΈΡ‚Π°Π½ΠΎΠ²Ρ‹ΠΉ ΠΈΠΌΠΏΠ»Π°Π½Ρ‚ ΠΊΠΎΠ½Ρ‚Π΅ΠΉΠ½Π΅Ρ€Π½ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ°. ΠŸΠΎΠ΄Ρ€ΠΎΠ±Π½ΠΎ описан ΠΌΠ΅Ρ‚ΠΎΠ΄ выполнСния ΠΏΠ΅Ρ€Π΅Π΄Π½Π΅Π³ΠΎ Π·Π°Π±Ρ€ΡŽΡˆΠΈΠ½Π½ΠΎΠ³ΠΎ доступа ΠΊ поясничным ΠΏΠΎΠ·Π²ΠΎΠ½ΠΊΠ°ΠΌ, дСкомпрСссии ΠΏΠΎΠ·Π²ΠΎΠ½ΠΎΡ‡Π½ΠΎΠ³ΠΎ ΠΊΠ°Π½Π°Π»Π° с ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΉ стабилизациСй ΠΎΠΏΠ΅Ρ€ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ сСгмСнта Ρ‚ΠΈΡ‚Π°Π½ΠΎΠ²Ρ‹ΠΌ ΠΈΠΌΠΏΠ»Π°Π½Ρ‚ΠΎΠΌ. УстановлСно, Ρ‡Ρ‚ΠΎ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ дСкомпрСссии Π΄ΡƒΡ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ мСшка ΠΈ Π½Π΅Ρ€Π²Π½Ρ‹Ρ… ΠΊΠΎΡ€Π΅ΡˆΠΊΠΎΠ² Π±ΠΎΠ»Π΅Π΅ эффСктивСн, Ρ‡Π΅ΠΌ дСкомпрСссия с использованиСм Π·Π°Π΄Π½Π΅Π³ΠΎ доступа. Π’ΠΎ всСх Π½Π°Π±Π»ΡŽΠ΄Π΅Π½ΠΈΡΡ… достигнут Ρ…ΠΎΡ€ΠΎΡˆΠΈΠΉ клиничСский эффСкт. Π Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΠΎΠ²Π°Π½ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΏΡ€ΠΈ спондилолистСзС І–ІІ стСпСни, Π±ΠΎΠ»ΡŒΡˆΠΈΡ… заднСсрСдинных Π³Ρ€Ρ‹ΠΆΠ°Ρ…. ОсобСнно ΠΌΠ΅Ρ‚ΠΎΠ΄ эффСктивСн Ρƒ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… ΠΏΡ€ΠΈ Ρ€Π΅Ρ†ΠΈΠ΄ΠΈΠ²Π΅ заднСсрСдинных Π³Ρ€Ρ‹ΠΆ ΠΈ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Π½ΠΎΠΌ Ρ€ΡƒΠ±Ρ†ΠΎΠ²ΠΎ-спаСчном процСссС ΠΏΠ΅Ρ€Π΅Π΄Π½ΠΈΡ… ΠΎΡ‚Π΄Π΅Π»ΠΎΠ² ΡΠΏΠΈΠ΄ΡƒΡ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ пространства.ΠŸΡ€ΠΎΠ°Π½Π°Π»Ρ–Π·ΠΎΠ²Π°Π½Ρ– Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ лікування 14 ΠΏΠ°Ρ†Ρ–Ρ”Π½Ρ‚Ρ–Π² Π· ΠΏΡ€ΠΈΠ²ΠΎΠ΄Ρƒ Ρ€Ρ–Π·Π½ΠΎΠΌΠ°Π½Ρ–Ρ‚Π½ΠΎΡ— ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³Ρ–Ρ— Π½ΠΈΠΆΠ½ΡŒΠΎΠΏΠΎΠΏΠ΅Ρ€Π΅ΠΊΠΎΠ²ΠΎΠ³ΠΎ Π²Ρ–Π΄Π΄Ρ–Π»Ρƒ Ρ…Ρ€Π΅Π±Ρ‚Π°. Всім Ρ…Π²ΠΎΡ€ΠΈΠΌ здійснСний ΠΏΠ΅Ρ€Π΅Π΄Π½Ρ–ΠΉ ΠΌΡ–ΠΆΡ‚Ρ–Π»ΠΎΠ²ΠΈΠΉ ΠΊΠΎΡ€ΠΏΠΎΡ€ΠΎΠ΄Π΅Π·, встановлСний Ρ†ΠΈΠ»Ρ–Π½Π΄Ρ€ΠΈΡ‡Π½ΠΈΠΉ Ρ‚ΠΈΡ‚Π°Π½ΠΎΠ²ΠΈΠΉ Ρ–ΠΌΠΏΠ»Π°Π½Ρ‚ ΠΊΠΎΠ½Ρ‚Π΅ΠΉΠ½Π΅Ρ€Π½ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΡƒ. Π”ΠΎΠΊΠ»Π°Π΄Π½ΠΎ описаний ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΏΠ΅Ρ€Π΅Π΄Π½ΡŒΠΎΠ³ΠΎ Π·Π°ΠΎΡ‡Π΅Ρ€Π΅Π²ΠΈΠ½Π½ΠΎΠ³ΠΎ доступу Π΄ΠΎ ΠΏΠΎΠΏΠ΅Ρ€Π΅ΠΊΠΎΠ²ΠΈΡ… Ρ…Ρ€Π΅Π±Ρ†Ρ–Π², дСкомпрСсії Ρ…Ρ€Π΅Π±Ρ‚ΠΎΠ²ΠΎΠ³ΠΎ ΠΊΠ°Π½Π°Π»Ρƒ Π· подальшою ΡΡ‚Π°Π±Ρ–Π»Ρ–Π·Π°Ρ†Ρ–Ρ”ΡŽ ΠΎΠΏΠ΅Ρ€ΠΎΠ²Π°Π½ΠΎΠ³ΠΎ сСгмСнта Π·Π° допомогою Ρ‚ΠΈΡ‚Π°Π½ΠΎΠ²ΠΎΠ³ΠΎ Ρ–ΠΌΠΏΠ»Π°Π½Ρ‚Π°. ВстановлСно, Ρ‰ΠΎ Ρ†Π΅ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ дСкомпрСсії Π΄ΡƒΡ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΌΡ–ΡˆΠΊΠ° Π±Ρ–Π»ΡŒΡˆ Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΈΠΉ, Π½Ρ–ΠΆ дСкомпрСсія Π· використанням заднього доступу. Π’ усіх спостСрСТСннях ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΈΠΉ Ρ…ΠΎΡ€ΠΎΡˆΠΈΠΉ ΠΊΠ»Ρ–Π½Ρ–Ρ‡Π½ΠΈΠΉ Π΅Ρ„Π΅ΠΊΡ‚. Π Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΠΎΠ²Π°Π½Π΅ використання ΠΌΠ΅Ρ‚ΠΎΠ΄Ρƒ Π·Π° наявності спондилолістСзу І–ІІ ступСня, Π²Π΅Π»ΠΈΠΊΠΈΡ… Π·Π°Π΄Π½ΡŒΠΎΡΠ΅Ρ€Π΅Π΄ΠΈΠ½Π½ΠΈΡ… Π³Ρ€ΠΈΠΆ. Особливо Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΈΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ Ρƒ Ρ…Π²ΠΎΡ€ΠΈΡ… Π· Ρ€Π΅Ρ†ΠΈΠ΄ΠΈΠ²Π°ΠΌΠΈ Π·Π°Π΄Π½ΡŒΠΎΡΠ΅Ρ€Π΅Π΄ΠΈΠ½Π½ΠΈΡ… Π³Ρ€ΠΈΠΆ Ρ‚Π° Π·Π½Π°Ρ‡Π½ΠΈΠΌ Ρ€ΡƒΠ±Ρ†Π΅Π²ΠΈΠΌ процСсом ΠΏΠ΅Ρ€Π΅Π΄Π½Ρ–Ρ… Π²Ρ–Π΄Π΄Ρ–Π»Ρ–Π² Π΅ΠΏΡ–Π΄ΡƒΡ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ простору

    Day-night variability of EC, OC, WSOC and inorganic ions in urban environment of Indo-Gangetic Plain: implications to secondary aerosol formation

    No full text
    This manuscript reports on the day- and night-time variability of EC, OC, WSOC and inorganic ions in ambient aerosols (PM2.5 and PM10) sampled from an urban site (Kanpur) in the Indo-Gangetic Plain. The chemical data also provide evidence for the secondary aerosol formation and variability in the composition of particulate matter. The aerosol mass is dominated by fine-mode particles and PM2.5/PM10 mass ratio exhibit significant temporal variability (range: 0.46 to 0.86). The chemical composition suggests that total carbonaceous aerosols (TCA = 1.6 Γ— OC + EC) and water-soluble inorganic species (WSIS) account for nearly 50 and 20% of the PM2.5 mass, respectively. The mass concentrations of PM2.5, EC and OC show about 30% increase during night-time. A significant linear relation between EC-OC (R2 = 0.66) and OC-K+ (R2 = 0.59) and their characteristic ratios suggest biomass burning emission as a dominant source. The average WSOC/OC ratio is relatively high in the day-time samples (0.66 Β± 0.11) compared to that in the night-time (0.47 Β± 0.07); suggesting increased contribution of secondary organic aerosols. The mass fraction of particulate NO3- increases by a factor of five during night-time due to relatively stable NH4NO3 and/or its secondary formation from the hydrolysis of N2O5. Although the concentration of SO42- is noticeably higher during day-time (~20%), the day-night variability of particulate-NH4+ is insignificant. The concentrations of OC, EC and inorganic species (K+, NH4+, NO3- and SO42-) show 2 to 4 fold increase during the haze events

    Atmospheric abundances of primary and secondary carbonaceous species at two high-altitude sites in India: sources and temporal variability

    No full text
    Based on the time-series analyses of bulk-aerosol samples, we report on the large-scale temporal variability in the atmospheric abundances of elemental carbon (EC) and organic carbon (OC) at two high-altitude sites, Manora Peak (1950 m asl in north India) and Mt. Abu (1680 m asl in western India). The total suspended particulate (TSP) mass concentration in the ambient atmosphere also exhibits large seasonal variability at both the sites; varying from 13.4 to 432.3 Β΅g m<SUP>-3</SUP> at Mt. Abu and 12.7 to 271.7 Β΅g m<SUP>-3</SUP> at Manora Peak. The relatively high abundance of TSP, occurring during Apr-Jun, is associated with enhanced contribution from mineral dust. Both, OC and EC abundances at Manora Peak are nearly 2-3 times higher than those at Mt. Abu; the minimum concentrations occurring during the high-dust season (Apr-Jun) and monsoon season (Jul-Aug) and maximum in winter months (Dec-Mar). At Mt. Abu, annual-average abundances of OC (range: 0.9-12.3 Β΅g m<SUP>-3</SUP>; Av = 3.7 Β΅g m<SUP>-3</SUP>) and EC (range: 0.06-2.3 Β΅g m<SUP>-3</SUP>; Av = 0.5 Β΅g m<SUP>-3</SUP>) account for about 10 and 2% of the TSP, respectively. In contrast, annual-average concentrations of OC and EC at Manora Peak are 8.7 Β΅g m-3 (range: 2.0-22.3 Β΅g m<SUP>-3</SUP>) and 1.1 Β΅g m<SUP>-3</SUP> (range: 0.14-2.7 Β΅g m<SUP>-3</SUP>), respectively; and account for about 14 and 2% of the TSP. The OC/EC ratios at the two sites (Manora Peak, range: 4.8-14.9 and Mt. Abu, range: 3.0-11.5) are significantly higher compared to those reported in the literature (2.0-3.0) for the urban regions. The high OC/EC ratios and low EC concentrations are attributed to relative dominance of organic carbon derived from biomass burning (crop waste). The average contribution of total carbonaceous aerosols (TCA; TCA = 1.6 Γ— OC + EC) to TSP is ~24% at Manora Peak and ~16% at Mt. Abu is only 15%. The relatively high contribution of TCA, at Manora Peak, is influenced by the regional emission sources in north India. The contribution of secondary organic carbon (SOC) to OC, calculated based on minimum OC/EC ratio method, averages around 27% at Manora Peak and 16% at Mt. Abu; and brings to focus its significant role on a regional scale. The low EC concentration together with significant contribution of OC and SOC to TCA and their temporal variability suggests reassessment of relative amounts of absorbing (BC) and scattering (OC) species used in the radiative forcing models on a regional scale

    Temporal trends in atmospheric PM<SUB>2.5</SUB>, PM<SUB>10</SUB>, elemental carbon, organic carbon, water-soluble organic carbon, and optical properties: impact of biomass burning emissions in the Indo-Gangetic plain

    No full text
    The first simultaneous measurements and analytical data on atmospheric concentrations of PM<SUB>2.5</SUB>, PM<SUB>10</SUB>, inorganic constituents, carbonaceous species, and their optical properties (aerosol optical depth, AOD; absorption coefficient, b<SUB>abs</SUB>; mass absorption efficiency, Οƒ <SUB>abs</SUB>; and single scattering albedo, SSA) from an urban site (Kanpur) in the Indo-Gangetic Plain are reported here. Significantly high aerosol mass concentration (&gt;100 ΞΌ g m<SUP>-3</SUP>) and AOD (&gt; 0.3) are seen as a characteristic feature throughout the sampling period, from October 2008 to April 2009. The temporal variability in the mass fractions of carbonaceous species (EC, OC, and WSOC) is pronounced during October-January when emissions from biomass burning are dominant and OC is a major constituent (~30%) of PM<SUB>2.5</SUB> mass. The WSOC/OC ratio varies from 0.21 to 0.65, suggesting significant contribution from secondary organic aerosols (SOAs). The mass fraction of SO<SUB>4</SUB><SUP>2-</SUP> in PM<SUB>2.5</SUB> (Av: 12.5%) exceeds that of NO<SUB>3</SUB><SUP>-</SUP> and NH<SUB>4</SUB><SUP>+</SUP>. Aerosol absorption coefficient (@ 678 nm) decreases from 90 Mm<SUP>-1</SUP> (in December) to 20 Mm<SUP>-1</SUP> (in April), and a linear regression analysis of the data for b<SUB>abs</SUB> and EC (n = 54) provides a measure of the mass absorption efficiency of EC (9.6 m<SUP>2</SUP> g<SUP>-1</SUP>). In contrast, scattering coefficient (@ 678 nm) increases from 98 Mm<SUP>-1</SUP> (in January) to 1056 Mm<SUP>-1</SUP> (in April) and an average mass scattering efficiency of 3.0 Β± 0.9 m<SUP>2</SUP> g<SUP>-1</SUP> is obtained for PM<SUB>10</SUB> samples. The highest bscat was associated with the dust storm event (April 17, 2009) over northern Iraq, eastern Syria, and southern Turkey; thus, resulting in high SSA (0.93 Β± 0.02) during March-April compared to 0.82 Β± 0.04 in October-February. These results have implications to large temporal variability in the atmospheric radiative forcing due to aerosols over northern India

    Inter-comparison of thermal and optical methods for determination of atmospheric black carbon and attenuation coefficient from an urban location in northern India

    No full text
    The simultaneous measurements of black carbon (BC, based on Aethalometer) and elemental carbon (EC, using thermo-optical EC-OC analyzer) in airborne particles collected from an urban location (Kanpur) in northern India are reported here. The strategy for site-selection is most relevant in order to assess the relative dominance of emissions from coal-fired industries, fossil-fuel combustion and biomass burning on the seasonal variability of EC (BC) concentrations. An inter-comparison of the analytical data (n = 32) suggests that BC mass concentration is ~20% higher than that of EC. However, attenuation coefficient (b<SUB>ATN</SUB>) measured by the two analytical instruments shows good agreement (slope = 0.97, n = 27), establishing the validity of b<SUB>ATN</SUB> derived from thermo-optical EC-OC analyzer. Furthermore, slope (20.7 m<SUP>2</SUP> g<SUP>-1</SUP>) of a linear-fit to the data (n = 48, R<SUP>2</SUP> = 0.86) for surface EC concentration (EC<SUB>s</SUB> ≀ 8 Β΅g C cm<SUP>-2</SUP>) and optical-attenuation (ATN ≀ 180) measured at 678 nm on thermo-optical analyzer provides an independent and novel way of determining the "site-specific" attenuation cross-section (Οƒ<SUB>ATN</SUB>)

    ΠŸΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ Ρ‚Π° ΡΡ‚Ρ–ΠΉΠΊΡ–ΡΡ‚ΡŒ Π΄ΠΎ ΡƒΡ€Π°ΠΆΠ΅Π½ΡŒ Π±Ρ–ΠΎΡ‚ΠΈΡ‡Π½ΠΈΠΌΠΈ Ρ‡ΠΈΠ½Π½ΠΈΠΊΠ°ΠΌΠΈ Π»Ρ–Π½Ρ–ΠΉ-Π±Π°Ρ‚ΡŒΠΊΡ–Π²ΡΡŒΠΊΠΈΡ… ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Ρ–Π² Π³Ρ–Π±Ρ€ΠΈΠ΄Ρ–Π² ΠΊΡƒΠΊΡƒΡ€ΡƒΠ΄Π·ΠΈ Π·Π° використання Π±Ρ–ΠΎΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Ρ–Π² Π² ΡƒΠΌΠΎΠ²Π°Ρ… Π·Ρ€ΠΎΡˆΠ΅Π½Π½Ρ

    Get PDF
    Purpose and objectives. The purpose was to improve the existing technology of growing parents of innovative maize hybrids on irrigated lands by evaluating the impact of new biologicals on plant diseases, pest infestation and seed yield under irrigation in the Southern Steppe.Materials and methods. The study was conducted in the experimental field of the Institute of Irrigated Agriculture of NAAS in 2019–2020. Factor A – parental lines belonging to various ripening groups (DK 445, DK 411, DK 281, and DK 247) included in the pedigree of hybrids Stepovyi, Skadovskyi, Azov, Arabat, Chonhar, Vira, Oleshkivskyi, Hileia and others bred at the Institute of Irrigated Agriculture of NAAS and the Institute of Grain Crops of NAAS. Factor B - treatment of maize parents with innovative biologicals – Fluorescein BT, Trichopsin BT, Biospectrum BT. The methods were conventional for irrigation conditions and maize breeding studies.Results and discussion. The studied biologicals had positive effects on resistance to fungal diseases. The development of blister smut (Ustilago zeae Beckm.) on early-ripening line DK 281 was influenced by all the biologicals. Fluorescein BΠ’ reduced the disease incidence by 1.9%; Trichopsin BG – by 3.0%; Biospectrum BT – by 3.2%. The incidence of Fusarium head blight was also decreased by biologicals. Biospectrum BT was the most effective agent. The incidence of Fusarium head blight in the lines decreased by 2.8–4.0%. The lowest incidence of Fusarium wilt was recorded in line DK 247 treated with Biospectrum BT – 8.9%. Corn borer infestation was reduced by Trichopsin BT and Biospectrum BT, which have both insecticide/fungicidal and growth-stimulating effects. The reduction in the incidence was 2.3–2.8%, depending on the genotype of the lines. Treatment with biologicals improved the cob structure of the studied lines. Trichopsin BT and Biospectrum BT had the greatest effects on the cob parameters. Due to Biospectrum BT, the cob length increased by 5.2–6.7%, the cob diameter – by 2.0–4.9%, and the cob grain weight – by 3.0–7.1%. The results of measurement of the yields from the parents (maize lines) showed that under irrigation the average performance of the studied maize lines ranged 3.75 to 6.11 t/ha, depending on the genotype of the lines (factor A) and the use of biologicals.Conclusions. It was found that biologicals Fluorescein BT, Trichopsin BT, and Biospectrum BT reduced the damage to maize lines induced by blister smut, Fusarium wilt, and corn borer by 0.9–4.2%. Treatment with Biospectrum BT ensured the highest grain yields from the maize parent, which averaged 4.63 t/ha, the gain in the yield was 0.44 t/ha or 10.5%. Treatment with Trichopsin BT had a positive effect on the yield, which averaged 4.54 t/ha, providing a gain in the yield of 0.35 t/ha or of 8.4%. Treatment with Fluorescein BT increased the yield by 0.14 t/ha or by 3.3%. Biospectrum BT was the most effective agent, which provided a significant reduction in the damage to the maize lines caused by fungal diseases and pestsУстановлСно влияниС микробиологичСских ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² инсСкто-Ρ„ΡƒΠ½Π³ΠΈΡ†ΠΈΠ΄Π½ΠΎΠ³ΠΎ ΠΈ Ρ€ΠΎΡΡ‚ΡΡ‚ΠΈΠΌΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ дСйствия Π½Π° биомСтричСскиС ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ, структуру продуктивности, ΡƒΡΡ‚ΠΎΠΉΡ‡ΠΈΠ²ΠΎΡΡ‚ΡŒ ΠΊ пораТСнности Π³Ρ€ΠΈΠ±Π½Ρ‹ΠΌΠΈ заболСваниями ΠΈ врСдитСлями Π»ΠΈΠ½ΠΈΠΉ-Ρ€ΠΎΠ΄ΠΈΡ‚Π΅Π»ΡŒΡΠΊΠΈΡ… ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² соврСмСнных Π³ΠΈΠ±Ρ€ΠΈΠ΄ΠΎΠ² ΠΊΡƒΠΊΡƒΡ€ΡƒΠ·Ρ‹. ВыявлСна рСакция Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ… Π»ΠΈΠ½ΠΈΠΉ-Ρ€ΠΎΠ΄ΠΈΡ‚Π΅Π»ΡŒΡΠΊΠΈΡ… ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² Π”Πš 445, Π”Πš 411, Π”Πš 281, Π”Πš 247, входящих Π² Ρ€ΠΎΠ΄ΠΎΡΠ»ΠΎΠ²Π½ΡƒΡŽ Π³ΠΈΠ±Ρ€ΠΈΠ΄ΠΎΠ² Π‘Ρ‚Π΅ΠΏΠΎΠ²ΠΎΠΉ, Бкадовский, Азов, Арабат, Π§ΠΎΠ½Π³Π°Ρ€, Π’Π΅Ρ€Π°, ОлСшкивський, ГилСя ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΡ…. УстановлСно, Ρ‡Ρ‚ΠΎ Π±ΠΈΠΎΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Ρ‹ ЀлуорСсцин Π‘Π’, Врихопсин Π‘Π’, БиоспСктр Π‘Π’ ΠΈΠΌΠ΅ΡŽΡ‚ минимальноС влияниС Π½Π° биомСтричСскиС ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ Π»ΠΈΠ½ΠΈΠΉ ΠΊΡƒΠΊΡƒΡ€ΡƒΠ·Ρ‹. Однако эти ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Ρ‹ ΠΎΠΊΠ°Π·Π°Π»ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ влияниС Π½Π° ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ устойчивости ΠΊ ΠΏΡƒΠ·Ρ‹Ρ€Ρ‡Π°Ρ‚ΠΎΠΉ Π³ΠΎΠ»ΠΎΠ²Π½Π΅ ΠΊΡƒΠΊΡƒΡ€ΡƒΠ·Ρ‹ (Ustilago zeae Beckm.), Ρ„ΡƒΠ·Π°Ρ€ΠΈΠΎΠ·Ρƒ ΠΊΠ°Ρ‡Π°Π½Π° (Fusarium moniliforme Scheld.), стСблСвому (ΠΊΡƒΠΊΡƒΡ€ΡƒΠ·Π½ΠΎΠΌΡƒ) ΠΌΠΎΡ‚Ρ‹Π»ΡŒΠΊΡƒ (Ostrinia nubilalis). ΠžΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° Π²Π΅Π³Π΅Ρ‚ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… растСний ΠΏΡ€ΠΈΠ²Π΅Π»Π° ΠΊ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡŽ уроТайности сСмян Π»ΠΈΠ½ΠΈΠΉ-Ρ€ΠΎΠ΄ΠΈΡ‚Π΅Π»ΡŒΡΠΊΠΈΡ… ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² гибридовУстановлСно Π²ΠΏΠ»ΠΈΠ² ΠΌΡ–ΠΊΡ€ΠΎΠ±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΡ… ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Ρ–Π² інсСкто-Ρ„ΡƒΠ½Π³Ρ–Ρ†ΠΈΠ΄Π½ΠΎΡ— Ρ‚Π° Ρ€Ρ–ΡΡ‚ΡΡ‚ΠΈΠΌΡƒΠ»ΡŽΡŽΡ‡ΠΎΡ— Π΄Ρ–Ρ— Π½Π° Π±Ρ–ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π½Ρ– ΠΏΠΎΠΊΠ°Π·Π½ΠΈΠΊΠΈ, структуру продуктивності, ΡΡ‚Ρ–ΠΉΠΊΡ–ΡΡ‚ΡŒ Π΄ΠΎ ураТСності Π³Ρ€ΠΈΠ±Π½ΠΈΠΌΠΈ Π·Π°Ρ…Π²ΠΎΡ€ΡŽΠ²Π°Π½Π½ΡΠΌΠΈ Ρ‚Π° ΡˆΠΊΡ–Π΄Π½ΠΈΠΊΠ°ΠΌΠΈ Π»Ρ–Π½Ρ–ΠΉ-Π±Π°Ρ‚ΡŒΠΊΡ–Π²ΡΡŒΠΊΠΈΡ… ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Ρ–Π² сучасних Π³Ρ–Π±Ρ€ΠΈΠ΄Ρ–Π² ΠΊΡƒΠΊΡƒΡ€ΡƒΠ΄Π·ΠΈ. ВиявлСно Ρ€Π΅Π°ΠΊΡ†Ρ–ΡŽ Ρ‡ΠΎΡ‚ΠΈΡ€ΡŒΠΎΡ… Π»Ρ–Π½Ρ–ΠΉ-Π±Π°Ρ‚ΡŒΠΊΡ–Π²ΡΡŒΠΊΠΈΡ… ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Ρ–Π² Π”Πš 445, Π”Πš 411, Π”Πš 281, Π”Πš 247, Ρ‰ΠΎ Π²Ρ…ΠΎΠ΄ΡΡ‚ΡŒ Π΄ΠΎ Ρ€ΠΎΠ΄ΠΎΠ²ΠΎΠ΄Ρƒ Π³Ρ–Π±Ρ€ΠΈΠ΄Ρ–Π² Π‘Ρ‚Π΅ΠΏΠΎΠ²ΠΈΠΉ, Бкадовський, Азов, Арабат, Π§ΠΎΠ½Π³Π°Ρ€, Π’Ρ–Ρ€Π°, ΠžΠ»Π΅ΡˆΠΊΡ–Π²ΡΡŒΠΊΠΈΠΉ, ГілСя Ρ‚Π° Ρ–Π½ΡˆΠΈΡ…. УстановлСно, Ρ‰ΠΎ Π±Ρ–ΠΎΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ ЀлуорСсцин Β Π‘Π’, Врихопсин Π‘Π’,Β  БіоспСктр Π‘Π’ ΠΌΠ°ΡŽΡ‚ΡŒ ΠΌΡ–Π½Ρ–ΠΌΠ°Π»ΡŒΠ½ΠΈΠΉ Π²ΠΏΠ»ΠΈΠ² Π½Π° Π±Ρ–ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π½Ρ– ΠΏΠΎΠΊΠ°Π·Π½ΠΈΠΊΠΈ Π»Ρ–Π½Ρ–ΠΉ ΠΊΡƒΠΊΡƒΡ€ΡƒΠ΄Π·ΠΈ. ΠŸΡ€ΠΎΡ‚Π΅ Ρ†Ρ– ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΈ ΠΌΠ°Π»ΠΈ ΠΏΠΎΠ·ΠΈΡ‚ΠΈΠ²Π½ΠΈΠΉ Π²ΠΏΠ»ΠΈΠ² Π½Π° підвищСння стійкості Π΄ΠΎ пухирчастої саТки ΠΊΡƒΠΊΡƒΡ€ΡƒΠ΄Π·ΠΈ (Ustilago zeae Beckm.), Ρ„ΡƒΠ·Π°Ρ€Ρ–ΠΎΠ·Ρƒ ΠΊΠ°Ρ‡Π°Π½Π° (Fusarium moniliforme Scheld.), стСблового (кукурудзяний) ΠΌΠ΅Ρ‚Π΅Π»ΠΈΠΊΠ° (Ostrinia nubilalis). ΠžΠ±Ρ€ΠΎΠ±Π»Π΅Π½Π½Ρ Π²Π΅Π³Π΅Ρ‚ΡƒΡŽΡ‡ΠΈΡ… рослин ΠΏΡ€ΠΈΠ·Π²Π΅Π»ΠΎ Π΄ΠΎ підвищСння вроТайності насіння Π»Ρ–Π½Ρ–ΠΉ-Π±Π°Ρ‚ΡŒΠΊΡ–Π²ΡΡŒΠΊΠΈΡ… ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Ρ–Π² Π³Ρ–Π±Ρ€ΠΈΠ΄Ρ–
    corecore