23 research outputs found
ΠΠΠΠΠ ΠΠΠΠΠΠΠΠ¬ΠΠΠΠ Π ΠΠΠΠ£Π‘Π£ ΠΠ ΠΠΠΠ₯ ΠΠ Π ΠΠ ΠΠΠΠ’Π£ΠΠΠΠΠ ΠΠΠ‘ΠΠΠΠ¨ΠΠΠΠΠΠ‘ΠΠΠ₯ ΠΠΠΠΠΠΠΠ¦Π¬
In article foreign norms of designing of high-speed railways and influence of the minimal radius of a curve on cost indexes of a line are examined. Recommendations on application of those or other norms are given.Π ΡΡΠ°ΡΡΠ΅ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°ΡΡΡΡ Π·Π°ΡΡΠ±Π΅ΠΆΠ½ΡΠ΅ Π½ΠΎΡΠΌΡ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π²ΡΡΠΎΠΊΠΎΡΠΊΠΎΡΠΎΡΡΠ½ΡΡ
ΠΆΠ΅Π»Π΅Π·Π½ΡΡ
Π΄ΠΎΡΠΎΠ³ ΠΈ Π²Π»ΠΈΡΠ½ΠΈΠ΅ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ°Π΄ΠΈΡΡΠ° ΠΊΡΠΈΠ²ΠΎΠΉ Π½Π° ΡΡΠΎΠΈΠΌΠΎΡΡΠ½ΡΠ΅ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΠΈ ΡΡΠ°ΡΡΡ. ΠΠ°ΡΡΡΡ ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°ΡΠΈΠΈ ΠΏΠΎ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠ΅Ρ
ΠΈΠ»ΠΈ ΠΈΠ½ΡΡ
Π½ΠΎΡΠΌΠ£ ΡΡΠ°ΡΡΡ ΡΠΎΠ·Π³Π»ΡΠ΄Π°ΡΡΡΡΡ Π·Π°ΡΡΠ±ΡΠΆΠ½Ρ Π½ΠΎΡΠΌΠΈ ΠΏΡΠΎΠ΅ΠΊΡΡΠ²Π°Π½Π½Ρ Π²ΠΈΡΠΎΠΊΠΎΡΠ²ΠΈΠ΄ΠΊΡΡΠ½ΠΈΡ
Π·Π°Π»ΡΠ·Π½ΠΈΡΡ Ρ Π²ΠΏΠ»ΠΈΠ² ΠΌΡΠ½ΡΠΌΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ°Π΄ΡΡΡΠ° ΠΊΡΠΈΠ²ΠΎΡ Π½Π° Π²Π°ΡΡΡΡΠ½Ρ ΠΏΠΎΠΊΠ°Π·Π½ΠΈΠΊΠΈ ΡΡΠ°ΡΠΈ. ΠΠ°ΡΡΡΡΡ ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°ΡΡΡ ΡΠΎΠ΄ΠΎ Π·Π°ΡΡΠΎΡΡΠ²Π°Π½Π½Ρ ΡΠΈΡ
ΡΠΈ ΡΠ½ΡΠΈΡ
Π½ΠΎΡΠΌ
Absorption coefficient and site-specific mass absorption efficiency of elemental carbon in aerosols over urban, rural, and high-altitude sites in India
Temporal and spatial variability in the absorption coefficient (b<SUB>abs</SUB>, Mm<SUP>-1</SUP>) and mass absorption efficiency (MAE, Ο<SUB>abs</SUB>, m<SUP>2</SUP>g<SUP>-1</SUP>) of elemental carbon (EC) in atmospheric aerosols studied from urban, rural, and high-altitude sites is reported here. Ambient aerosols, collected on tissuquartz filters, are analyzed for EC mass concentration using thermo-optical EC-OC analyzer, wherein simultaneously measured optical-attenuation (ATN, equivalent to initial transmittance) of 678 nm laser source has been used for the determination of MAE and absorption coefficient. At high-altitude sites, measured ATN and surface EC loading (EC<SUB>s</SUB>, ΞΌg cm<SUP>-2</SUP>) on the filters exhibit linear positive relationship (R<SUP>2</SUP> = 0.86-0.96), suggesting EC as a principal absorbing component. However, relatively large scatter in regression analyses for the data from urban sites suggests contribution from other species. The representative MAE of EC, during wintertime (Dec 2004), at a rural site (Jaduguda) is 6.1 Β± 2.0 m<SUP>2</SUP>g<SUP>-1</SUP>. In contrast, MAE at the two high-altitude sites is 14.5 Β± 1.1 (Manora Peak) and 10.4 Β± 1.4 (Mt. Abu); and that at urban sites is 11.1 Β± 2.6 (Allahabad) and 11.3 Β± 2.2 m<SUP>2</SUP>g<SUP>-1</SUP> (Hisar). The long-term average MAE at Manora Peak (February 2005 to June 2007) is 12.8 Β± 2.9 m<SUP>2</SUP>g<SUP>-1</SUP> (range: 6.1-19.1 m<SUP>2</SUP>g<SUP>-1</SUP>). These results are unlike the constant conversion factor used for MAE in optical instruments for the determination of BC mass concentration. The absorption coefficient also shows large spatiotemporal variability; the lower values are typical of the high-altitude sites and higher values for the urban and rural atmosphere. Such large variability documented for the absorption parameters suggests the need for their suitable parametrization in the assessment of direct aerosol radiative forcing on a regional scale
Spatio-temporal variability in atmospheric abundances of EC, OC and WSOC over Northern India
The atmospheric abundances of elemental carbon (EC), organic carbon (OC) and water-soluble organic carbon (WSOC) have been measured in aerosol samples collected during wintertime (December-March) from selected sites (urban, rural and high-altitude) in northern India. A characteristic feature of their abundance pattern, at urban sites, is reflected in the OC/EC ratios (range: 2.4-14.5, Av=7.8Β±2.4, n=77) indicating dominant contribution from biomass burning sources (wood-fuel and agriculture waste). This is in sharp contrast to the OC/EC ratios at a rural site (range: 2.1-4.0, Av=3.1Β±0.6, n=7) influenced by emissions from coal-fired industries. The long-term measurements made from a high-altitude site (~2000 m amsl) reveal significantly lower abundances of EC and OC; suggesting that boundary layer dynamics (during wintertime) play an important role in efficient trapping of pollutants within the Indo-Gangetic Plain (northern India). The WSOC/OC ratios are fairly uniform (~0.35) in aerosols over urban sites but relatively enhanced contribution of WSOC and higher ratios (~0.5) at a high-altitude site emphasizes the significance of secondary organic aerosols. The comprehensive data set on EC, OC and WSOC/OC ratios from northern India is crucial to improve model parameterization of carbonaceous aerosols for atmospheric scattering and absorption of solar radiation on a regional scale
ΠΠ΅ΡΠ΅Π΄Π½ΡΠΉ Π·Π°ΠΎΡΠ΅ΡΠ΅Π²ΠΈΠ½Π½ΠΈΠΉ ΠΌΡΠΆΡΡΠ»ΠΎΠ²ΠΈΠΉ ΠΊΠΎΡΠΏΠΎΡΠΎΠ΄Π΅Π· Π½Π° Π½ΠΈΠΆΠ½ΡΠΎΠΏΠΎΠΏΠ΅ΡΠ΅ΠΊΠΎΠ²ΠΎΠΌΡ ΡΡΠ²Π½Ρ
14 cases of various pathology of inferior lumbar spine treatment results were analyzed. The anterior interbody fusion has been performed at all patients using cylindrical titanium implant of container type. Retroperitoneal surgical approach to lumbar spine, spinal decompression and further stabilization were described in details. It was found out that proposed method of dural sack and neural roots decompression is more effective than posterior approach technique. Good functional outcome was achieved in all cases. The described method was recommended at spondilolystesis of IβII degree, large posteromedial hernias. The method is most effective at patients with recurrent posteromedial hernias with severe scarring of anterior extradural space.ΠΡΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ Π»Π΅ΡΠ΅Π½ΠΈΡ 14 Π±ΠΎΠ»ΡΠ½ΡΡ
ΠΏΠΎ ΠΏΠΎΠ²ΠΎΠ΄Ρ ΡΠ°Π·Π»ΠΈΡΠ½ΠΎΠΉ ΠΏΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΠΈ Π½ΠΈΠΆΠ½Π΅ΠΏΠΎΡΡΠ½ΠΈΡΠ½ΠΎΠ³ΠΎ ΠΎΡΠ΄Π΅Π»Π° ΠΏΠΎΠ·Π²ΠΎΠ½ΠΎΡΠ½ΠΈΠΊΠ°. ΠΡΠ΅ΠΌ Π±ΠΎΠ»ΡΠ½ΡΠΌ ΠΎΡΡΡΠ΅ΡΡΠ²Π»Π΅Π½ ΠΏΠ΅ΡΠ΅Π΄Π½ΠΈΠΉ ΠΌΠ΅ΠΆΡΠ΅Π»ΠΎΠ²ΠΎΠΉ ΠΊΠΎΡΠΏΠΎΡΠΎΠ΄Π΅Π·, ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ ΡΠΈΠ»ΠΈΠ½Π΄ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΈΡΠ°Π½ΠΎΠ²ΡΠΉ ΠΈΠΌΠΏΠ»Π°Π½Ρ ΠΊΠΎΠ½ΡΠ΅ΠΉΠ½Π΅ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΠΏΠ°. ΠΠΎΠ΄ΡΠΎΠ±Π½ΠΎ ΠΎΠΏΠΈΡΠ°Π½ ΠΌΠ΅ΡΠΎΠ΄ Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ ΠΏΠ΅ΡΠ΅Π΄Π½Π΅Π³ΠΎ Π·Π°Π±ΡΡΡΠΈΠ½Π½ΠΎΠ³ΠΎ Π΄ΠΎΡΡΡΠΏΠ° ΠΊ ΠΏΠΎΡΡΠ½ΠΈΡΠ½ΡΠΌ ΠΏΠΎΠ·Π²ΠΎΠ½ΠΊΠ°ΠΌ, Π΄Π΅ΠΊΠΎΠΌΠΏΡΠ΅ΡΡΠΈΠΈ ΠΏΠΎΠ·Π²ΠΎΠ½ΠΎΡΠ½ΠΎΠ³ΠΎ ΠΊΠ°Π½Π°Π»Π° Ρ ΠΏΠΎΡΠ»Π΅Π΄ΡΡΡΠ΅ΠΉ ΡΡΠ°Π±ΠΈΠ»ΠΈΠ·Π°ΡΠΈΠ΅ΠΉ ΠΎΠΏΠ΅ΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΡΠ΅Π³ΠΌΠ΅Π½ΡΠ° ΡΠΈΡΠ°Π½ΠΎΠ²ΡΠΌ ΠΈΠΌΠΏΠ»Π°Π½ΡΠΎΠΌ. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΡΠΉ ΠΌΠ΅ΡΠΎΠ΄ Π΄Π΅ΠΊΠΎΠΌΠΏΡΠ΅ΡΡΠΈΠΈ Π΄ΡΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΌΠ΅ΡΠΊΠ° ΠΈ Π½Π΅ΡΠ²Π½ΡΡ
ΠΊΠΎΡΠ΅ΡΠΊΠΎΠ² Π±ΠΎΠ»Π΅Π΅ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π΅Π½, ΡΠ΅ΠΌ Π΄Π΅ΠΊΠΎΠΌΠΏΡΠ΅ΡΡΠΈΡ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π·Π°Π΄Π½Π΅Π³ΠΎ Π΄ΠΎΡΡΡΠΏΠ°. ΠΠΎ Π²ΡΠ΅Ρ
Π½Π°Π±Π»ΡΠ΄Π΅Π½ΠΈΡΡ
Π΄ΠΎΡΡΠΈΠ³Π½ΡΡ Ρ
ΠΎΡΠΎΡΠΈΠΉ ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΡΡΠ΅ΠΊΡ. Π Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΠΎΠ²Π°Π½ΠΎ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΏΡΠΈ ΡΠΏΠΎΠ½Π΄ΠΈΠ»ΠΎΠ»ΠΈΡΡΠ΅Π·Π΅ ΠβΠΠ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ, Π±ΠΎΠ»ΡΡΠΈΡ
Π·Π°Π΄Π½Π΅ΡΡΠ΅Π΄ΠΈΠ½Π½ΡΡ
Π³ΡΡΠΆΠ°Ρ
. ΠΡΠΎΠ±Π΅Π½Π½ΠΎ ΠΌΠ΅ΡΠΎΠ΄ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π΅Π½ Ρ Π±ΠΎΠ»ΡΠ½ΡΡ
ΠΏΡΠΈ ΡΠ΅ΡΠΈΠ΄ΠΈΠ²Π΅ Π·Π°Π΄Π½Π΅ΡΡΠ΅Π΄ΠΈΠ½Π½ΡΡ
Π³ΡΡΠΆ ΠΈ Π²ΡΡΠ°ΠΆΠ΅Π½Π½ΠΎΠΌ ΡΡΠ±ΡΠΎΠ²ΠΎ-ΡΠΏΠ°Π΅ΡΠ½ΠΎΠΌ ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΠΏΠ΅ΡΠ΅Π΄Π½ΠΈΡ
ΠΎΡΠ΄Π΅Π»ΠΎΠ² ΡΠΏΠΈΠ΄ΡΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π°.ΠΡΠΎΠ°Π½Π°Π»ΡΠ·ΠΎΠ²Π°Π½Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΈ Π»ΡΠΊΡΠ²Π°Π½Π½Ρ 14 ΠΏΠ°ΡΡΡΠ½ΡΡΠ² Π· ΠΏΡΠΈΠ²ΠΎΠ΄Ρ ΡΡΠ·Π½ΠΎΠΌΠ°Π½ΡΡΠ½ΠΎΡ ΠΏΠ°ΡΠΎΠ»ΠΎΠ³ΡΡ Π½ΠΈΠΆΠ½ΡΠΎΠΏΠΎΠΏΠ΅ΡΠ΅ΠΊΠΎΠ²ΠΎΠ³ΠΎ Π²ΡΠ΄Π΄ΡΠ»Ρ Ρ
ΡΠ΅Π±ΡΠ°. ΠΡΡΠΌ Ρ
Π²ΠΎΡΠΈΠΌ Π·Π΄ΡΠΉΡΠ½Π΅Π½ΠΈΠΉ ΠΏΠ΅ΡΠ΅Π΄Π½ΡΠΉ ΠΌΡΠΆΡΡΠ»ΠΎΠ²ΠΈΠΉ ΠΊΠΎΡΠΏΠΎΡΠΎΠ΄Π΅Π·, Π²ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΈΠΉ ΡΠΈΠ»ΡΠ½Π΄ΡΠΈΡΠ½ΠΈΠΉ ΡΠΈΡΠ°Π½ΠΎΠ²ΠΈΠΉ ΡΠΌΠΏΠ»Π°Π½Ρ ΠΊΠΎΠ½ΡΠ΅ΠΉΠ½Π΅ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΠΏΡ. ΠΠΎΠΊΠ»Π°Π΄Π½ΠΎ ΠΎΠΏΠΈΡΠ°Π½ΠΈΠΉ ΠΌΠ΅ΡΠΎΠ΄ ΠΏΠ΅ΡΠ΅Π΄Π½ΡΠΎΠ³ΠΎ Π·Π°ΠΎΡΠ΅ΡΠ΅Π²ΠΈΠ½Π½ΠΎΠ³ΠΎ Π΄ΠΎΡΡΡΠΏΡ Π΄ΠΎ ΠΏΠΎΠΏΠ΅ΡΠ΅ΠΊΠΎΠ²ΠΈΡ
Ρ
ΡΠ΅Π±ΡΡΠ², Π΄Π΅ΠΊΠΎΠΌΠΏΡΠ΅ΡΡΡ Ρ
ΡΠ΅Π±ΡΠΎΠ²ΠΎΠ³ΠΎ ΠΊΠ°Π½Π°Π»Ρ Π· ΠΏΠΎΠ΄Π°Π»ΡΡΠΎΡ ΡΡΠ°Π±ΡΠ»ΡΠ·Π°ΡΡΡΡ ΠΎΠΏΠ΅ΡΠΎΠ²Π°Π½ΠΎΠ³ΠΎ ΡΠ΅Π³ΠΌΠ΅Π½ΡΠ° Π·Π° Π΄ΠΎΠΏΠΎΠΌΠΎΠ³ΠΎΡ ΡΠΈΡΠ°Π½ΠΎΠ²ΠΎΠ³ΠΎ ΡΠΌΠΏΠ»Π°Π½ΡΠ°. ΠΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΠΎ ΡΠ΅ΠΉ ΠΌΠ΅ΡΠΎΠ΄ Π΄Π΅ΠΊΠΎΠΌΠΏΡΠ΅ΡΡΡ Π΄ΡΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΌΡΡΠΊΠ° Π±ΡΠ»ΡΡ Π΅ΡΠ΅ΠΊΡΠΈΠ²Π½ΠΈΠΉ, Π½ΡΠΆ Π΄Π΅ΠΊΠΎΠΌΠΏΡΠ΅ΡΡΡ Π· Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Π½ΡΠΌ Π·Π°Π΄Π½ΡΠΎΠ³ΠΎ Π΄ΠΎΡΡΡΠΏΡ. Π ΡΡΡΡ
ΡΠΏΠΎΡΡΠ΅ΡΠ΅ΠΆΠ΅Π½Π½ΡΡ
ΠΎΡΡΠΈΠΌΠ°Π½ΠΈΠΉ Ρ
ΠΎΡΠΎΡΠΈΠΉ ΠΊΠ»ΡΠ½ΡΡΠ½ΠΈΠΉ Π΅ΡΠ΅ΠΊΡ. Π Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΠΎΠ²Π°Π½Π΅ Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Π½Ρ ΠΌΠ΅ΡΠΎΠ΄Ρ Π·Π° Π½Π°ΡΠ²Π½ΠΎΡΡΡ ΡΠΏΠΎΠ½Π΄ΠΈΠ»ΠΎΠ»ΡΡΡΠ΅Π·Ρ ΠβΠΠ ΡΡΡΠΏΠ΅Π½Ρ, Π²Π΅Π»ΠΈΠΊΠΈΡ
Π·Π°Π΄Π½ΡΠΎΡΠ΅ΡΠ΅Π΄ΠΈΠ½Π½ΠΈΡ
Π³ΡΠΈΠΆ. ΠΡΠΎΠ±Π»ΠΈΠ²ΠΎ Π΅ΡΠ΅ΠΊΡΠΈΠ²Π½ΠΈΠΉ ΠΌΠ΅ΡΠΎΠ΄ Ρ Ρ
Π²ΠΎΡΠΈΡ
Π· ΡΠ΅ΡΠΈΠ΄ΠΈΠ²Π°ΠΌΠΈ Π·Π°Π΄Π½ΡΠΎΡΠ΅ΡΠ΅Π΄ΠΈΠ½Π½ΠΈΡ
Π³ΡΠΈΠΆ ΡΠ° Π·Π½Π°ΡΠ½ΠΈΠΌ ΡΡΠ±ΡΠ΅Π²ΠΈΠΌ ΠΏΡΠΎΡΠ΅ΡΠΎΠΌ ΠΏΠ΅ΡΠ΅Π΄Π½ΡΡ
Π²ΡΠ΄Π΄ΡΠ»ΡΠ² Π΅ΠΏΡΠ΄ΡΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΡΡΠΎΡΡ
Day-night variability of EC, OC, WSOC and inorganic ions in urban environment of Indo-Gangetic Plain: implications to secondary aerosol formation
This manuscript reports on the day- and night-time variability of EC, OC, WSOC and inorganic ions in ambient aerosols (PM2.5 and PM10) sampled from an urban site (Kanpur) in the Indo-Gangetic Plain. The chemical data also provide evidence for the secondary aerosol formation and variability in the composition of particulate matter. The aerosol mass is dominated by fine-mode particles and PM2.5/PM10 mass ratio exhibit significant temporal variability (range: 0.46 to 0.86). The chemical composition suggests that total carbonaceous aerosols (TCA = 1.6 Γ OC + EC) and water-soluble inorganic species (WSIS) account for nearly 50 and 20% of the PM2.5 mass, respectively. The mass concentrations of PM2.5, EC and OC show about 30% increase during night-time. A significant linear relation between EC-OC (R2 = 0.66) and OC-K+ (R2 = 0.59) and their characteristic ratios suggest biomass burning emission as a dominant source. The average WSOC/OC ratio is relatively high in the day-time samples (0.66 Β± 0.11) compared to that in the night-time (0.47 Β± 0.07); suggesting increased contribution of secondary organic aerosols. The mass fraction of particulate NO3- increases by a factor of five during night-time due to relatively stable NH4NO3 and/or its secondary formation from the hydrolysis of N2O5. Although the concentration of SO42- is noticeably higher during day-time (~20%), the day-night variability of particulate-NH4+ is insignificant. The concentrations of OC, EC and inorganic species (K+, NH4+, NO3- and SO42-) show 2 to 4 fold increase during the haze events
Atmospheric abundances of primary and secondary carbonaceous species at two high-altitude sites in India: sources and temporal variability
Based on the time-series analyses of bulk-aerosol samples, we report on the large-scale temporal variability in the atmospheric abundances of elemental carbon (EC) and organic carbon (OC) at two high-altitude sites, Manora Peak (1950 m asl in north India) and Mt. Abu (1680 m asl in western India). The total suspended particulate (TSP) mass concentration in the ambient atmosphere also exhibits large seasonal variability at both the sites; varying from 13.4 to 432.3 Β΅g m<SUP>-3</SUP> at Mt. Abu and 12.7 to 271.7 Β΅g m<SUP>-3</SUP> at Manora Peak. The relatively high abundance of TSP, occurring during Apr-Jun, is associated with enhanced contribution from mineral dust. Both, OC and EC abundances at Manora Peak are nearly 2-3 times higher than those at Mt. Abu; the minimum concentrations occurring during the high-dust season (Apr-Jun) and monsoon season (Jul-Aug) and maximum in winter months (Dec-Mar). At Mt. Abu, annual-average abundances of OC (range: 0.9-12.3 Β΅g m<SUP>-3</SUP>; Av = 3.7 Β΅g m<SUP>-3</SUP>) and EC (range: 0.06-2.3 Β΅g m<SUP>-3</SUP>; Av = 0.5 Β΅g m<SUP>-3</SUP>) account for about 10 and 2% of the TSP, respectively. In contrast, annual-average concentrations of OC and EC at Manora Peak are 8.7 Β΅g m-3 (range: 2.0-22.3 Β΅g m<SUP>-3</SUP>) and 1.1 Β΅g m<SUP>-3</SUP> (range: 0.14-2.7 Β΅g m<SUP>-3</SUP>), respectively; and account for about 14 and 2% of the TSP. The OC/EC ratios at the two sites (Manora Peak, range: 4.8-14.9 and Mt. Abu, range: 3.0-11.5) are significantly higher compared to those reported in the literature (2.0-3.0) for the urban regions. The high OC/EC ratios and low EC concentrations are attributed to relative dominance of organic carbon derived from biomass burning (crop waste). The average contribution of total carbonaceous aerosols (TCA; TCA = 1.6 Γ OC + EC) to TSP is ~24% at Manora Peak and ~16% at Mt. Abu is only 15%. The relatively high contribution of TCA, at Manora Peak, is influenced by the regional emission sources in north India. The contribution of secondary organic carbon (SOC) to OC, calculated based on minimum OC/EC ratio method, averages around 27% at Manora Peak and 16% at Mt. Abu; and brings to focus its significant role on a regional scale. The low EC concentration together with significant contribution of OC and SOC to TCA and their temporal variability suggests reassessment of relative amounts of absorbing (BC) and scattering (OC) species used in the radiative forcing models on a regional scale
Temporal trends in atmospheric PM<SUB>2.5</SUB>, PM<SUB>10</SUB>, elemental carbon, organic carbon, water-soluble organic carbon, and optical properties: impact of biomass burning emissions in the Indo-Gangetic plain
The first simultaneous measurements and analytical data on atmospheric concentrations of PM<SUB>2.5</SUB>, PM<SUB>10</SUB>, inorganic constituents, carbonaceous species, and their optical properties (aerosol optical depth, AOD; absorption coefficient, b<SUB>abs</SUB>; mass absorption efficiency, Ο <SUB>abs</SUB>; and single scattering albedo, SSA) from an urban site (Kanpur) in the Indo-Gangetic Plain are reported here. Significantly high aerosol mass concentration (>100 ΞΌ g m<SUP>-3</SUP>) and AOD (> 0.3) are seen as a characteristic feature throughout the sampling period, from October 2008 to April 2009. The temporal variability in the mass fractions of carbonaceous species (EC, OC, and WSOC) is pronounced during October-January when emissions from biomass burning are dominant and OC is a major constituent (~30%) of PM<SUB>2.5</SUB> mass. The WSOC/OC ratio varies from 0.21 to 0.65, suggesting significant contribution from secondary organic aerosols (SOAs). The mass fraction of SO<SUB>4</SUB><SUP>2-</SUP> in PM<SUB>2.5</SUB> (Av: 12.5%) exceeds that of NO<SUB>3</SUB><SUP>-</SUP> and NH<SUB>4</SUB><SUP>+</SUP>. Aerosol absorption coefficient (@ 678 nm) decreases from 90 Mm<SUP>-1</SUP> (in December) to 20 Mm<SUP>-1</SUP> (in April), and a linear regression analysis of the data for b<SUB>abs</SUB> and EC (n = 54) provides a measure of the mass absorption efficiency of EC (9.6 m<SUP>2</SUP> g<SUP>-1</SUP>). In contrast, scattering coefficient (@ 678 nm) increases from 98 Mm<SUP>-1</SUP> (in January) to 1056 Mm<SUP>-1</SUP> (in April) and an average mass scattering efficiency of 3.0 Β± 0.9 m<SUP>2</SUP> g<SUP>-1</SUP> is obtained for PM<SUB>10</SUB> samples. The highest bscat was associated with the dust storm event (April 17, 2009) over northern Iraq, eastern Syria, and southern Turkey; thus, resulting in high SSA (0.93 Β± 0.02) during March-April compared to 0.82 Β± 0.04 in October-February. These results have implications to large temporal variability in the atmospheric radiative forcing due to aerosols over northern India
Inter-comparison of thermal and optical methods for determination of atmospheric black carbon and attenuation coefficient from an urban location in northern India
The simultaneous measurements of black carbon (BC, based on Aethalometer) and elemental carbon (EC, using thermo-optical EC-OC analyzer) in airborne particles collected from an urban location (Kanpur) in northern India are reported here. The strategy for site-selection is most relevant in order to assess the relative dominance of emissions from coal-fired industries, fossil-fuel combustion and biomass burning on the seasonal variability of EC (BC) concentrations. An inter-comparison of the analytical data (n = 32) suggests that BC mass concentration is ~20% higher than that of EC. However, attenuation coefficient (b<SUB>ATN</SUB>) measured by the two analytical instruments shows good agreement (slope = 0.97, n = 27), establishing the validity of b<SUB>ATN</SUB> derived from thermo-optical EC-OC analyzer. Furthermore, slope (20.7 m<SUP>2</SUP> g<SUP>-1</SUP>) of a linear-fit to the data (n = 48, R<SUP>2</SUP> = 0.86) for surface EC concentration (EC<SUB>s</SUB> β€ 8 Β΅g C cm<SUP>-2</SUP>) and optical-attenuation (ATN β€ 180) measured at 678 nm on thermo-optical analyzer provides an independent and novel way of determining the "site-specific" attenuation cross-section (Ο<SUB>ATN</SUB>)
ΠΡΠΎΠ΄ΡΠΊΡΠΈΠ²Π½ΡΡΡΡ ΡΠ° ΡΡΡΠΉΠΊΡΡΡΡ Π΄ΠΎ ΡΡΠ°ΠΆΠ΅Π½Ρ Π±ΡΠΎΡΠΈΡΠ½ΠΈΠΌΠΈ ΡΠΈΠ½Π½ΠΈΠΊΠ°ΠΌΠΈ Π»ΡΠ½ΡΠΉ-Π±Π°ΡΡΠΊΡΠ²ΡΡΠΊΠΈΡ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΡΠ² Π³ΡΠ±ΡΠΈΠ΄ΡΠ² ΠΊΡΠΊΡΡΡΠ΄Π·ΠΈ Π·Π° Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Π½Ρ Π±ΡΠΎΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΡΠ² Π² ΡΠΌΠΎΠ²Π°Ρ Π·ΡΠΎΡΠ΅Π½Π½Ρ
Purpose and objectives. The purpose was to improve the existing technology of growing parents of innovative maize hybrids on irrigated lands by evaluating the impact of new biologicals on plant diseases, pest infestation and seed yield under irrigation in the Southern Steppe.Materials and methods. The study was conducted in the experimental field of the Institute of Irrigated Agriculture of NAAS in 2019β2020. Factor A β parental lines belonging to various ripening groups (DK 445, DK 411, DK 281, and DK 247) included in the pedigree of hybrids Stepovyi, Skadovskyi, Azov, Arabat, Chonhar, Vira, Oleshkivskyi, Hileia and others bred at the Institute of Irrigated Agriculture of NAAS and the Institute of Grain Crops of NAAS. Factor B - treatment of maize parents with innovative biologicals β Fluorescein BT, Trichopsin BT, Biospectrum BT. The methods were conventional for irrigation conditions and maize breeding studies.Results and discussion. The studied biologicals had positive effects on resistance to fungal diseases. The development of blister smut (Ustilago zeae Beckm.) on early-ripening line DK 281 was influenced by all the biologicals. Fluorescein BΠ’ reduced the disease incidence by 1.9%; Trichopsin BG β by 3.0%; Biospectrum BT β by 3.2%. The incidence of Fusarium head blight was also decreased by biologicals. Biospectrum BT was the most effective agent. The incidence of Fusarium head blight in the lines decreased by 2.8β4.0%. The lowest incidence of Fusarium wilt was recorded in line DK 247 treated with Biospectrum BT β 8.9%. Corn borer infestation was reduced by Trichopsin BT and Biospectrum BT, which have both insecticide/fungicidal and growth-stimulating effects. The reduction in the incidence was 2.3β2.8%, depending on the genotype of the lines. Treatment with biologicals improved the cob structure of the studied lines. Trichopsin BT and Biospectrum BT had the greatest effects on the cob parameters. Due to Biospectrum BT, the cob length increased by 5.2β6.7%, the cob diameter β by 2.0β4.9%, and the cob grain weight β by 3.0β7.1%. The results of measurement of the yields from the parents (maize lines) showed that under irrigation the average performance of the studied maize lines ranged 3.75 to 6.11 t/ha, depending on the genotype of the lines (factor A) and the use of biologicals.Conclusions. It was found that biologicals Fluorescein BT, Trichopsin BT, and Biospectrum BT reduced the damage to maize lines induced by blister smut, Fusarium wilt, and corn borer by 0.9β4.2%. Treatment with Biospectrum BT ensured the highest grain yields from the maize parent, which averaged 4.63 t/ha, the gain in the yield was 0.44 t/ha or 10.5%. Treatment with Trichopsin BT had a positive effect on the yield, which averaged 4.54 t/ha, providing a gain in the yield of 0.35 t/ha or of 8.4%. Treatment with Fluorescein BT increased the yield by 0.14 t/ha or by 3.3%. Biospectrum BT was the most effective agent, which provided a significant reduction in the damage to the maize lines caused by fungal diseases and pestsΠ£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ Π²Π»ΠΈΡΠ½ΠΈΠ΅ ΠΌΠΈΠΊΡΠΎΠ±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠΎΠ² ΠΈΠ½ΡΠ΅ΠΊΡΠΎ-ΡΡΠ½Π³ΠΈΡΠΈΠ΄Π½ΠΎΠ³ΠΎ ΠΈ ΡΠΎΡΡΡΡΠΈΠΌΡΠ»ΠΈΡΡΡΡΠ΅Π³ΠΎ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ Π½Π° Π±ΠΈΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΠΈ, ΡΡΡΡΠΊΡΡΡΡ ΠΏΡΠΎΠ΄ΡΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ, ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΡΡΡ ΠΊ ΠΏΠΎΡΠ°ΠΆΠ΅Π½Π½ΠΎΡΡΠΈ Π³ΡΠΈΠ±Π½ΡΠΌΠΈ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΡΠΌΠΈ ΠΈ Π²ΡΠ΅Π΄ΠΈΡΠ΅Π»ΡΠΌΠΈ Π»ΠΈΠ½ΠΈΠΉ-ΡΠΎΠ΄ΠΈΡΠ΅Π»ΡΡΠΊΠΈΡ
ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠΎΠ² ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ
Π³ΠΈΠ±ΡΠΈΠ΄ΠΎΠ² ΠΊΡΠΊΡΡΡΠ·Ρ. ΠΡΡΠ²Π»Π΅Π½Π° ΡΠ΅Π°ΠΊΡΠΈΡ ΡΠ΅ΡΡΡΠ΅Ρ
Π»ΠΈΠ½ΠΈΠΉ-ΡΠΎΠ΄ΠΈΡΠ΅Π»ΡΡΠΊΠΈΡ
ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠΎΠ² ΠΠ 445, ΠΠ 411, ΠΠ 281, ΠΠ 247, Π²Ρ
ΠΎΠ΄ΡΡΠΈΡ
Π² ΡΠΎΠ΄ΠΎΡΠ»ΠΎΠ²Π½ΡΡ Π³ΠΈΠ±ΡΠΈΠ΄ΠΎΠ² Π‘ΡΠ΅ΠΏΠΎΠ²ΠΎΠΉ, Π‘ΠΊΠ°Π΄ΠΎΠ²ΡΠΊΠΈΠΉ, ΠΠ·ΠΎΠ², ΠΡΠ°Π±Π°Ρ, Π§ΠΎΠ½Π³Π°Ρ, ΠΠ΅ΡΠ°, ΠΠ»Π΅ΡΠΊΠΈΠ²ΡΡΠΊΠΈΠΉ, ΠΠΈΠ»Π΅Ρ ΠΈ Π΄ΡΡΠ³ΠΈΡ
. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ Π±ΠΈΠΎΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΡ Π€Π»ΡΠΎΡΠ΅ΡΡΠΈΠ½ ΠΠ’, Π’ΡΠΈΡ
ΠΎΠΏΡΠΈΠ½ ΠΠ’, ΠΠΈΠΎΡΠΏΠ΅ΠΊΡΡ ΠΠ’ ΠΈΠΌΠ΅ΡΡ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ Π²Π»ΠΈΡΠ½ΠΈΠ΅ Π½Π° Π±ΠΈΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΠΈ Π»ΠΈΠ½ΠΈΠΉ ΠΊΡΠΊΡΡΡΠ·Ρ. ΠΠ΄Π½Π°ΠΊΠΎ ΡΡΠΈ ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΡ ΠΎΠΊΠ°Π·Π°Π»ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π²Π»ΠΈΡΠ½ΠΈΠ΅ Π½Π° ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΠ΅ ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΡΡΠΈ ΠΊ ΠΏΡΠ·ΡΡΡΠ°ΡΠΎΠΉ Π³ΠΎΠ»ΠΎΠ²Π½Π΅ ΠΊΡΠΊΡΡΡΠ·Ρ (Ustilago zeae Beckm.), ΡΡΠ·Π°ΡΠΈΠΎΠ·Ρ ΠΊΠ°ΡΠ°Π½Π° (Fusarium moniliforme Scheld.), ΡΡΠ΅Π±Π»Π΅Π²ΠΎΠΌΡ (ΠΊΡΠΊΡΡΡΠ·Π½ΠΎΠΌΡ) ΠΌΠΎΡΡΠ»ΡΠΊΡ (Ostrinia nubilalis). ΠΠ±ΡΠ°Π±ΠΎΡΠΊΠ° Π²Π΅Π³Π΅ΡΠΈΡΡΡΡΠΈΡ
ΡΠ°ΡΡΠ΅Π½ΠΈΠΉ ΠΏΡΠΈΠ²Π΅Π»Π° ΠΊ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΡ ΡΡΠΎΠΆΠ°ΠΉΠ½ΠΎΡΡΠΈ ΡΠ΅ΠΌΡΠ½ Π»ΠΈΠ½ΠΈΠΉ-ΡΠΎΠ΄ΠΈΡΠ΅Π»ΡΡΠΊΠΈΡ
ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠΎΠ² Π³ΠΈΠ±ΡΠΈΠ΄ΠΎΠ²Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ Π²ΠΏΠ»ΠΈΠ² ΠΌΡΠΊΡΠΎΠ±ΡΠΎΠ»ΠΎΠ³ΡΡΠ½ΠΈΡ
ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΡΠ² ΡΠ½ΡΠ΅ΠΊΡΠΎ-ΡΡΠ½Π³ΡΡΠΈΠ΄Π½ΠΎΡ ΡΠ° ΡΡΡΡΡΡΠΈΠΌΡΠ»ΡΡΡΠΎΡ Π΄ΡΡ Π½Π° Π±ΡΠΎΠΌΠ΅ΡΡΠΈΡΠ½Ρ ΠΏΠΎΠΊΠ°Π·Π½ΠΈΠΊΠΈ, ΡΡΡΡΠΊΡΡΡΡ ΠΏΡΠΎΠ΄ΡΠΊΡΠΈΠ²Π½ΠΎΡΡΡ, ΡΡΡΠΉΠΊΡΡΡΡ Π΄ΠΎ ΡΡΠ°ΠΆΠ΅Π½ΠΎΡΡΡ Π³ΡΠΈΠ±Π½ΠΈΠΌΠΈ Π·Π°Ρ
Π²ΠΎΡΡΠ²Π°Π½Π½ΡΠΌΠΈ ΡΠ° ΡΠΊΡΠ΄Π½ΠΈΠΊΠ°ΠΌΠΈ Π»ΡΠ½ΡΠΉ-Π±Π°ΡΡΠΊΡΠ²ΡΡΠΊΠΈΡ
ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΡΠ² ΡΡΡΠ°ΡΠ½ΠΈΡ
Π³ΡΠ±ΡΠΈΠ΄ΡΠ² ΠΊΡΠΊΡΡΡΠ΄Π·ΠΈ. ΠΠΈΡΠ²Π»Π΅Π½ΠΎ ΡΠ΅Π°ΠΊΡΡΡ ΡΠΎΡΠΈΡΡΠΎΡ
Π»ΡΠ½ΡΠΉ-Π±Π°ΡΡΠΊΡΠ²ΡΡΠΊΠΈΡ
ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΡΠ² ΠΠ 445, ΠΠ 411, ΠΠ 281, ΠΠ 247, ΡΠΎ Π²Ρ
ΠΎΠ΄ΡΡΡ Π΄ΠΎ ΡΠΎΠ΄ΠΎΠ²ΠΎΠ΄Ρ Π³ΡΠ±ΡΠΈΠ΄ΡΠ² Π‘ΡΠ΅ΠΏΠΎΠ²ΠΈΠΉ, Π‘ΠΊΠ°Π΄ΠΎΠ²ΡΡΠΊΠΈΠΉ, ΠΠ·ΠΎΠ², ΠΡΠ°Π±Π°Ρ, Π§ΠΎΠ½Π³Π°Ρ, ΠΡΡΠ°, ΠΠ»Π΅ΡΠΊΡΠ²ΡΡΠΊΠΈΠΉ, ΠΡΠ»Π΅Ρ ΡΠ° ΡΠ½ΡΠΈΡ
. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΠΎ Π±ΡΠΎΠΏΡΠ΅ΠΏΠ°ΡΠ°Ρ Π€Π»ΡΠΎΡΠ΅ΡΡΠΈΠ½ Β ΠΠ’, Π’ΡΠΈΡ
ΠΎΠΏΡΠΈΠ½ ΠΠ’,Β ΠΡΠΎΡΠΏΠ΅ΠΊΡΡ ΠΠ’ ΠΌΠ°ΡΡΡ ΠΌΡΠ½ΡΠΌΠ°Π»ΡΠ½ΠΈΠΉ Π²ΠΏΠ»ΠΈΠ² Π½Π° Π±ΡΠΎΠΌΠ΅ΡΡΠΈΡΠ½Ρ ΠΏΠΎΠΊΠ°Π·Π½ΠΈΠΊΠΈ Π»ΡΠ½ΡΠΉ ΠΊΡΠΊΡΡΡΠ΄Π·ΠΈ. ΠΡΠΎΡΠ΅ ΡΡ ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠΈ ΠΌΠ°Π»ΠΈ ΠΏΠΎΠ·ΠΈΡΠΈΠ²Π½ΠΈΠΉ Π²ΠΏΠ»ΠΈΠ² Π½Π° ΠΏΡΠ΄Π²ΠΈΡΠ΅Π½Π½Ρ ΡΡΡΠΉΠΊΠΎΡΡΡ Π΄ΠΎ ΠΏΡΡ
ΠΈΡΡΠ°ΡΡΠΎΡ ΡΠ°ΠΆΠΊΠΈ ΠΊΡΠΊΡΡΡΠ΄Π·ΠΈ (Ustilago zeae Beckm.), ΡΡΠ·Π°ΡΡΠΎΠ·Ρ ΠΊΠ°ΡΠ°Π½Π° (Fusarium moniliforme Scheld.), ΡΡΠ΅Π±Π»ΠΎΠ²ΠΎΠ³ΠΎ (ΠΊΡΠΊΡΡΡΠ΄Π·ΡΠ½ΠΈΠΉ) ΠΌΠ΅ΡΠ΅Π»ΠΈΠΊΠ° (Ostrinia nubilalis). ΠΠ±ΡΠΎΠ±Π»Π΅Π½Π½Ρ Π²Π΅Π³Π΅ΡΡΡΡΠΈΡ
ΡΠΎΡΠ»ΠΈΠ½ ΠΏΡΠΈΠ·Π²Π΅Π»ΠΎ Π΄ΠΎ ΠΏΡΠ΄Π²ΠΈΡΠ΅Π½Π½Ρ Π²ΡΠΎΠΆΠ°ΠΉΠ½ΠΎΡΡΡ Π½Π°ΡΡΠ½Π½Ρ Π»ΡΠ½ΡΠΉ-Π±Π°ΡΡΠΊΡΠ²ΡΡΠΊΠΈΡ
ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΡΠ² Π³ΡΠ±ΡΠΈΠ΄Ρ