174 research outputs found

    Wigner crystallization in a polarizable medium

    Full text link
    We present a variational study of the 2D and 3D Wigner crystal phase of large polarons. The method generalizes that introduced by S. Fratini,P.\ Qu{\'{e}}merais [Mod. Phys. Lett. B {\bf 12} 1003 (1998)]. We take into account the Wigner crystal normal modes rather than a single mean frequency in the minimization procedure of the variational free energy. We calculate the renormalized modes of the crystal as well as the charge polarization correlation function and polaron radius. The solid phase boundaries are determined via a Lindemann criterion, suitably generalized to take into account the classical-to-quantum cross-over. In the weak electron-phonon coupling limit, the Wigner crystal parameters are renormalized by the electron-phonon interaction leading to a stabilization of the solid phase for low polarizability of the medium. Conversely, at intermediate and strong coupling, the behavior of the system depends strongly on the polarizability of the medium. For weakly polarizable media, a density crossover occurs inside the solid phase when the renormalized plasma frequency approaches the phonon frequency. At low density, we have a renormalized polaron Wigner crystal, while at higher densities the electron-phonon interaction is weakened irrespective of the {\it bare} electron-phonon coupling. For strongly polarizable media, the system behaves as a Lorentz lattice of dipoles. The abrupt softening of the internal polaronic frequency predicted by Fratini and Quemerais is observed near the actual melting point only at very strong coupling, leading to a possible liquid polaronic phase for a wider range of parameters.Comment: 24 pages, 13 figures v1.

    Probing Spin-Charge Relation by Magnetoconductance in One-Dimensional Polymer Nanofibers

    Get PDF
    Polymer nanofibers are one-dimensional organic hydrocarbon systems containing conducting polymers where the non-linear local excitations such as solitons, polarons and bipolarons formed by the electron-phonon interaction were predicted. Magnetoconductance (MC) can simultaneously probe both the spin and charge of these mobile species and identify the effects of electron-electron interactions on these nonlinear excitations. Here we report our observations of a qualitatively different MC in polyacetylene (PA) and in polyaniline (PANI) and polythiophene (PT) nanofibers. In PA the MC is essentially zero, but it is present in PANI and PT. The universal scaling behavior and the zero (finite) MC in PA (PANI and PT) nanofibers provide evidence of Coulomb interactions between spinless charged solitons (interacting polarons which carry both spin and charge)

    Second malignancies after breast cancer: the impact of different treatment modalities

    Get PDF
    Treatment for non-metastatic breast cancer (BC) may be the cause of second malignancies in long-term survivors. Our aim was to investigate whether survivors present a higher risk of malignancy than the general population according to treatment received. We analysed data for 16 705 BC survivors treated at the Curie Institute (1981–1997) by either chemotherapy (various regimens), radiotherapy (high-energy photons from a 60Co unit or linear accelerator) and/or hormone therapy (2–5 years of tamoxifen). We calculated age-standardized incidence ratios (SIRs) for each malignancy, using data for the general French population from five regional registries. At a median follow-up 10.5 years, 709 patients had developed a second malignancy. The greatest increases in risk were for leukaemia (SIR: 2.07 (1.52–2.75)), ovarian cancer (SIR: 1.6 (1.27–2.04)) and gynaecological (cervical/endometrial) cancer (SIR: 1.6 (1.34–1.89); P<0.0001). The SIR for gastrointestinal cancer, the most common malignancy, was 0.82 (0.70–0.95; P<0.007). The increase in leukaemia was most strongly related to chemotherapy and that in gynaecological cancers to hormone therapy. Radiotherapy alone also had a significant, although lesser, effect on leukaemia and gynaecological cancer incidence. The increased risk of sarcomas and lung cancer was attributed to radiotherapy. No increased risk was observed for malignant melanoma, lymphoma, genitourinary, thyroid or head and neck cancer. There is a significantly increased risk of several kinds of second malignancy in women treated for BC, compared with the general population. This increase may be related to adjuvant treatment in some cases. However, the absolute risk is small

    Competing orders in a magnetic field: spin and charge order in the cuprate superconductors

    Full text link
    We describe two-dimensional quantum spin fluctuations in a superconducting Abrikosov flux lattice induced by a magnetic field applied to a doped Mott insulator. Complete numerical solutions of a self-consistent large N theory provide detailed information on the phase diagram and on the spatial structure of the dynamic spin spectrum. Our results apply to phases with and without long-range spin density wave order and to the magnetic quantum critical point separating these phases. We discuss the relationship of our results to a number of recent neutron scattering measurements on the cuprate superconductors in the presence of an applied field. We compute the pinning of static charge order by the vortex cores in the `spin gap' phase where the spin order remains dynamically fluctuating, and argue that these results apply to recent scanning tunnelling microscopy (STM) measurements. We show that with a single typical set of values for the coupling constants, our model describes the field dependence of the elastic neutron scattering intensities, the absence of satellite Bragg peaks associated with the vortex lattice in existing neutron scattering observations, and the spatial extent of charge order in STM observations. We mention implications of our theory for NMR experiments. We also present a theoretical discussion of more exotic states that can be built out of the spin and charge order parameters, including spin nematics and phases with `exciton fractionalization'.Comment: 36 pages, 33 figures; for a popular introduction, see http://onsager.physics.yale.edu/superflow.html; (v2) Added reference to new work of Chen and Ting; (v3) reorganized presentation for improved clarity, and added new appendix on microscopic origin; (v4) final published version with minor change

    Thermodynamic optimization of steady-flow industrial chemical processes

    Get PDF
    © 2018, The Author(s). Industrial steady-flow chemical processes are generally organised as a sequence of individually optimised operations. However, this may not achieve overall optimization since material (as recycle), heat and work transfers overall may not be well balanced. We introduce the idea of a preliminary overall thermodynamic balance to produce a reversible process, with the objective of minimising, for both economic and environmental reasons, the quality and quantity of energy used. This balance may later require adjustment to account for the realities of available materials and equipment. For this purpose, we introduce (i) a Carnot temperature, TCarnot, by which a Carnot machine (an engine which can operate as either a heat pump or a turbine) can supply the required heat at the correct temperature for a process to operate reversibly, that is with least energy, and (ii) the GH Diagram on which Carnot temperature-based processes are plotted in ?G–?H space. We demonstrate the utility of this analysis by simple application to the Haber–Bosch process for ammonia synthesis and by a sequence of operations for the synthesis of methanol. We also briefly introduce the state function exergy, which uses the natural environment as the reference base for energy in place of pure elements under standard conditions

    Neurotensin(8–13) analogs as dual NTS1 and NTS2 receptor ligands with enhanced effects on a mouse model of Parkinson's disease

    Get PDF
    : The modulatory interactions between neurotensin (NT) and the dopaminergic neurotransmitter system in the brain suggest that NT may be associated with the progression of Parkinson's disease (PD). NT exerts its neurophysiological effects by interactions with the human NT receptors type 1 (hNTS1) and 2 (hNTS2). Therefore, both receptor subtypes are promising targets for the development of novel NT-based analogs for the treatment of PD. In this study, we used a virtually guided molecular modeling approach to predict the activity of NT(8-13) analogs by investigating the docking models of ligands designed for binding to the human NTS1 and NTS2 receptors. The importance of the residues at positions 8 and/or 9 for hNTS1 and hNTS2 receptor binding affinity was experimentally confirmed by radioligand binding assays. Further in vitro ADME profiling and in vivo studies revealed that, compared to the parent peptide NT(8-13), compound 10 exhibited improved stability and BBB permeability combined with a significant enhancement of the motor function and memory in a mouse model of PD. The herein reported NTS1/NTS2 dual-specific NT(8-13) analogs represent an attractive tool for the development of therapeutic strategies against PD and potentially other CNS disorders

    Proton Therapy for Breast Cancer:A Consensus Statement From the Particle Therapy Cooperative Group Breast Cancer Subcommittee

    Get PDF
    Radiation therapy plays an important role in the multidisciplinary management of breast cancer. Recent years have seen improvements in breast cancer survival and a greater appreciation of potential long-term morbidity associated with the dose and volume of irradiated organs. Proton therapy reduces the dose to nontarget structures while optimizing target coverage. However, there remain additional financial costs associated with proton therapy, despite reductions over time, and studies have yet to demonstrate that protons improve upon the treatment outcomes achieved with photon radiation therapy. There remains considerable heterogeneity in proton patient selection and techniques, and the rapid technological advances in the field have the potential to affect evidence evaluation, given the long latency period for breast cancer radiation therapy recurrence and late effects. In this consensus statement, we assess the data available to the radiation oncology community of proton therapy for breast cancer, provide expert consensus recommendations on indications and technique, and highlight ongoing trials' cost-effectiveness analyses and key areas for future research. (c) 2021 Elsevier Inc. All rights reserved

    Stage I-II nodular lymphocyte-predominant Hodgkin lymphoma: a multi-institutional study of adult patients by ILROG

    Get PDF
    Nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL) is an uncommon histologic variant, and the optimal treatment of stage I-II NLPHL is undefined. We conducted a multicenter retrospective study including patients ≥16 years of age with stage I-II NLPHL diagnosed from 1995 through 2018 who underwent all forms of management, including radiotherapy (RT), combined modality therapy (CMT; RT+chemotherapy [CT]), CT, observation after excision, rituximab and RT, and single-agent rituximab. End points were progression-free survival (PFS), freedom from transformation, and overall survival (OS) without statistical comparison between management groups. We identified 559 patients with median age of 39 years: 72.3% were men, and 54.9% had stage I disease. Median follow-up was 5.5 years (interquartile range, 3.1-10.1). Five-year PFS and OS in the entire cohort were 87.1% and 98.3%, respectively. Primary management was RT alone (n = 257; 46.0%), CMT (n = 184; 32.9%), CT alone (n = 47; 8.4%), observation (n = 37; 6.6%), rituximab and RT (n = 19; 3.4%), and rituximab alone (n = 15; 2.7%). The 5-year PFS rates were 91.1% after RT, 90.5% after CMT, 77.8% after CT, 73.5% after observation, 80.8% after rituximab and RT, and 38.5% after rituximab alone. In the RT cohort, but not the CMT cohort, variant immunoarchitectural pattern and number of sites >2 were associated with worse PFS (P 2 (P = .0006). OS for patients with stage I-II NLPHL was excellent after all treatments
    corecore