8 research outputs found
Evaluation of a city-wide school-located influenza vaccination program in Oakland, California, with respect to vaccination coverage, school absences, and laboratory-confirmed influenza: A matched cohort study.
BACKGROUND:It is estimated that vaccinating 50%-70% of school-aged children for influenza can produce population-wide indirect effects. We evaluated a city-wide school-located influenza vaccination (SLIV) intervention that aimed to increase influenza vaccination coverage. The intervention was implemented in ≥95 preschools and elementary schools in northern California from 2014 to 2018. Using a matched cohort design, we estimated intervention impacts on student influenza vaccination coverage, school absenteeism, and community-wide indirect effects on laboratory-confirmed influenza hospitalizations. METHODS AND FINDINGS:We used a multivariate matching algorithm to identify a nearby comparison school district with pre-intervention characteristics similar to those of the intervention school district and matched schools in each district. To measure student influenza vaccination, we conducted cross-sectional surveys of student caregivers in 22 school pairs (2017 survey, N = 6,070; 2018 survey, N = 6,507). We estimated the incidence of laboratory-confirmed influenza hospitalization from 2011 to 2018 using surveillance data from school district zip codes. We analyzed student absenteeism data from 2011 to 2018 from each district (N = 42,487,816 student-days). To account for pre-intervention differences between districts, we estimated difference-in-differences (DID) in influenza hospitalization incidence and absenteeism rates using generalized linear and log-linear models with a population offset for incidence outcomes. Prior to the SLIV intervention, the median household income was 61,596 in the comparison site. The population in each site was predominately white (41% in the intervention site, 48% in the comparison site) and/or of Hispanic or Latino ethnicity (26% in the intervention site, 33% in the comparison site). The number of students vaccinated by the SLIV intervention ranged from 7,502 to 10,106 (22%-28% of eligible students) each year. During the intervention, influenza vaccination coverage among elementary students was 53%-66% in the comparison district. Coverage was similar between the intervention and comparison districts in influenza seasons 2014-2015 and 2015-2016 and was significantly higher in the intervention site in seasons 2016-2017 (7%; 95% CI 4, 11; p < 0.001) and 2017-2018 (11%; 95% CI 7, 15; p < 0.001). During seasons when vaccination coverage was higher among intervention schools and the vaccine was moderately effective, there was evidence of statistically significant indirect effects: The DID in the incidence of influenza hospitalization per 100,000 in the intervention versus comparison site was -17 (95% CI -30, -4; p = 0.008) in 2016-2017 and -37 (95% CI -54, -19; p < 0.001) in 2017-2018 among non-elementary-school-aged individuals and -73 (95% CI -147, 1; p = 0.054) in 2016-2017 and -160 (95% CI -267, -53; p = 0.004) in 2017-2018 among adults 65 years or older. The DID in illness-related school absences per 100 school days during the influenza season was -0.63 (95% CI -1.14, -0.13; p = 0.014) in 2016-2017 and -0.80 (95% CI -1.28, -0.31; p = 0.001) in 2017-2018. Limitations of this study include the use of an observational design, which may be subject to unmeasured confounding, and caregiver-reported vaccination status, which is subject to poor recall and low response rates. CONCLUSIONS:A city-wide SLIV intervention in a large, diverse urban population was associated with a decrease in the incidence of laboratory-confirmed influenza hospitalization in all age groups and a decrease in illness-specific school absence rate among students in 2016-2017 and 2017-2018, seasons when the vaccine was moderately effective, suggesting that the intervention produced indirect effects. Our findings suggest that in populations with moderately high background levels of influenza vaccination coverage, SLIV programs are associated with further increases in coverage and reduced influenza across the community
Recommended from our members
Impact of a city-wide school-located influenza vaccination program over four years on vaccination coverage, school absences, and laboratory-confirmed influenza: a prospective matched cohort study
AbstractBackgroundIt is estimated that vaccinating 50-70% of school-aged children for influenza can produce population-wide indirect effects. We evaluated a city-wide, school-located influenza vaccination (SLIV) intervention that aimed to increase influenza vaccination coverage. The intervention was implemented in over 95 pre-schools and elementary schools in northern California from 2014 to 2018. Using a matched prospective cohort design, we estimated intervention impacts on student influenza vaccination coverage, school absenteeism, and community-wide indirect effects on laboratory-confirmed influenza hospitalizations.Methods and FindingsWe used a multivariate matching algorithm to identify a nearby comparison school district with similar pre-intervention characteristics and matched schools in each district. To measure student influenza vaccination, we conducted cross-sectional surveys of student caregivers in 22 school pairs (2016 survey N = 6,070; 2017 survey N = 6,507). We estimated the incidence of laboratory-confirmed influenza hospitalization from 2011-2018 using surveillance data from school district zip codes. We analyzed student absenteeism data from 2011-2018 from each district (N = 42,487,816 student-days). To account for pre-intervention differences between districts, we estimated difference-in-differences (DID) in influenza hospitalization incidence and absenteeism rates using generalized linear and log-linear models with a population offset for incidence outcomes.The number of students vaccinated by the SLIV intervention ranged from 7,502 to 10,106 (22-28% of eligible students) each year. During the intervention, influenza vaccination coverage among elementary students was 53-66% in the comparison district. Coverage was similar between the intervention and comparison districts in 2014-15 and 2015-16 and was significantly higher in the intervention site in 2016-17 (7% 95% CI 4, 11) and 2017-18 (11% 95% CI 7, 15). During seasons when vaccination coverage was higher among intervention schools and the vaccine was moderately effective, there was evidence of statistically significant indirect effects: adjusting for pre-intervention differences between districts, the reduction in influenza hospitalizations in the intervention site was 76 (95% CI 20, 133) in 2016-17 and 165 (95% CI 86, 243) in 2017-18 among non-elementary school aged individuals and 327 (5, 659) in 2016-17 and 715 (236, 1195) in 2017-18 among adults 65 years or older. The reduction in illness-related school absences during influenza season was 3,538 (95% CI 709, 6,366) in 2016-17 and 8,249 (95% CI 3,213, 13,285) in 2017-18. Limitations of this study include the use of an observational design, which may be subject to unmeasured confounding, and caregiver-reported vaccination status, which is subject to poor recall and low response rates.ConclusionA city-wide SLIV intervention in a large, diverse urban population decreased the incidence of laboratory-confirmed influenza hospitalization in all age groups and decreased illness-specific school absence rates among students during seasons when the vaccine was moderately effective, suggesting that the intervention produced indirect effects. Our findings suggest that in populations with moderately high background levels of influenza vaccination coverage, SLIV programs can further increase coverage and reduce influenza across communities
Evaluation of a city-wide school-located influenza vaccination program in Oakland, California, with respect to vaccination coverage, school absences, and laboratory-confirmed influenza: A matched cohort study.
BACKGROUND:It is estimated that vaccinating 50%-70% of school-aged children for influenza can produce population-wide indirect effects. We evaluated a city-wide school-located influenza vaccination (SLIV) intervention that aimed to increase influenza vaccination coverage. The intervention was implemented in ≥95 preschools and elementary schools in northern California from 2014 to 2018. Using a matched cohort design, we estimated intervention impacts on student influenza vaccination coverage, school absenteeism, and community-wide indirect effects on laboratory-confirmed influenza hospitalizations. METHODS AND FINDINGS:We used a multivariate matching algorithm to identify a nearby comparison school district with pre-intervention characteristics similar to those of the intervention school district and matched schools in each district. To measure student influenza vaccination, we conducted cross-sectional surveys of student caregivers in 22 school pairs (2017 survey, N = 6,070; 2018 survey, N = 6,507). We estimated the incidence of laboratory-confirmed influenza hospitalization from 2011 to 2018 using surveillance data from school district zip codes. We analyzed student absenteeism data from 2011 to 2018 from each district (N = 42,487,816 student-days). To account for pre-intervention differences between districts, we estimated difference-in-differences (DID) in influenza hospitalization incidence and absenteeism rates using generalized linear and log-linear models with a population offset for incidence outcomes. Prior to the SLIV intervention, the median household income was 61,596 in the comparison site. The population in each site was predominately white (41% in the intervention site, 48% in the comparison site) and/or of Hispanic or Latino ethnicity (26% in the intervention site, 33% in the comparison site). The number of students vaccinated by the SLIV intervention ranged from 7,502 to 10,106 (22%-28% of eligible students) each year. During the intervention, influenza vaccination coverage among elementary students was 53%-66% in the comparison district. Coverage was similar between the intervention and comparison districts in influenza seasons 2014-2015 and 2015-2016 and was significantly higher in the intervention site in seasons 2016-2017 (7%; 95% CI 4, 11; p < 0.001) and 2017-2018 (11%; 95% CI 7, 15; p < 0.001). During seasons when vaccination coverage was higher among intervention schools and the vaccine was moderately effective, there was evidence of statistically significant indirect effects: The DID in the incidence of influenza hospitalization per 100,000 in the intervention versus comparison site was -17 (95% CI -30, -4; p = 0.008) in 2016-2017 and -37 (95% CI -54, -19; p < 0.001) in 2017-2018 among non-elementary-school-aged individuals and -73 (95% CI -147, 1; p = 0.054) in 2016-2017 and -160 (95% CI -267, -53; p = 0.004) in 2017-2018 among adults 65 years or older. The DID in illness-related school absences per 100 school days during the influenza season was -0.63 (95% CI -1.14, -0.13; p = 0.014) in 2016-2017 and -0.80 (95% CI -1.28, -0.31; p = 0.001) in 2017-2018. Limitations of this study include the use of an observational design, which may be subject to unmeasured confounding, and caregiver-reported vaccination status, which is subject to poor recall and low response rates. CONCLUSIONS:A city-wide SLIV intervention in a large, diverse urban population was associated with a decrease in the incidence of laboratory-confirmed influenza hospitalization in all age groups and a decrease in illness-specific school absence rate among students in 2016-2017 and 2017-2018, seasons when the vaccine was moderately effective, suggesting that the intervention produced indirect effects. Our findings suggest that in populations with moderately high background levels of influenza vaccination coverage, SLIV programs are associated with further increases in coverage and reduced influenza across the community
Recommended from our members
Impact of a city-wide school-located influenza vaccination program over four years on vaccination coverage, school absences, and laboratory-confirmed influenza: a prospective matched cohort study
AbstractBackgroundIt is estimated that vaccinating 50-70% of school-aged children for influenza can produce population-wide indirect effects. We evaluated a city-wide, school-located influenza vaccination (SLIV) intervention that aimed to increase influenza vaccination coverage. The intervention was implemented in over 95 pre-schools and elementary schools in northern California from 2014 to 2018. Using a matched prospective cohort design, we estimated intervention impacts on student influenza vaccination coverage, school absenteeism, and community-wide indirect effects on laboratory-confirmed influenza hospitalizations.Methods and FindingsWe used a multivariate matching algorithm to identify a nearby comparison school district with similar pre-intervention characteristics and matched schools in each district. To measure student influenza vaccination, we conducted cross-sectional surveys of student caregivers in 22 school pairs (2016 survey N = 6,070; 2017 survey N = 6,507). We estimated the incidence of laboratory-confirmed influenza hospitalization from 2011-2018 using surveillance data from school district zip codes. We analyzed student absenteeism data from 2011-2018 from each district (N = 42,487,816 student-days). To account for pre-intervention differences between districts, we estimated difference-in-differences (DID) in influenza hospitalization incidence and absenteeism rates using generalized linear and log-linear models with a population offset for incidence outcomes.The number of students vaccinated by the SLIV intervention ranged from 7,502 to 10,106 (22-28% of eligible students) each year. During the intervention, influenza vaccination coverage among elementary students was 53-66% in the comparison district. Coverage was similar between the intervention and comparison districts in 2014-15 and 2015-16 and was significantly higher in the intervention site in 2016-17 (7% 95% CI 4, 11) and 2017-18 (11% 95% CI 7, 15). During seasons when vaccination coverage was higher among intervention schools and the vaccine was moderately effective, there was evidence of statistically significant indirect effects: adjusting for pre-intervention differences between districts, the reduction in influenza hospitalizations in the intervention site was 76 (95% CI 20, 133) in 2016-17 and 165 (95% CI 86, 243) in 2017-18 among non-elementary school aged individuals and 327 (5, 659) in 2016-17 and 715 (236, 1195) in 2017-18 among adults 65 years or older. The reduction in illness-related school absences during influenza season was 3,538 (95% CI 709, 6,366) in 2016-17 and 8,249 (95% CI 3,213, 13,285) in 2017-18. Limitations of this study include the use of an observational design, which may be subject to unmeasured confounding, and caregiver-reported vaccination status, which is subject to poor recall and low response rates.ConclusionA city-wide SLIV intervention in a large, diverse urban population decreased the incidence of laboratory-confirmed influenza hospitalization in all age groups and decreased illness-specific school absence rates among students during seasons when the vaccine was moderately effective, suggesting that the intervention produced indirect effects. Our findings suggest that in populations with moderately high background levels of influenza vaccination coverage, SLIV programs can further increase coverage and reduce influenza across communities
Evaluation of a city-wide school-located influenza vaccination program in Oakland, California with respect to race and ethnicity: A matched cohort study.
BackgroundIncreasing influenza vaccination coverage in school-aged children may substantially reduce community transmission. School-located influenza vaccinations (SLIV) aim to promote vaccinations by increasing accessibility, which may be especially beneficial to race/ethnicity groups that face high barriers to preventative care. Here, we evaluate the effectiveness of a city-wide SLIV program by race/ethnicity from 2014 to 2018.MethodsWe used multivariate matching to pair schools in the intervention district in Oakland, CA with schools in a comparison district in West Contra Costa County, CA. We distributed cross-sectional surveys to measure caregiver-reported student vaccination status and estimated differences in vaccination coverage levels and reasons for non-vaccination between districts stratifying by race/ethnicity. We estimated difference-in-differences (DID) of laboratory confirmed influenza hospitalization incidence between districts stratified by race/ethnicity using surveillance data.ResultsDifferences in influenza vaccination coverage in the intervention vs. comparison district were larger among White (2017-18: 21.0% difference [95% CI: 9.7%, 32.3%]) and Hispanic/Latino (13.4% [8.8%, 18.0%]) students than Asian/Pacific Islander (API) (8.9% [1.3%, 16.5%]), Black (5.9% [-2.2%, 14.0%]), and multiracial (6.3% [-1.8%, 14.3%)) students. Concerns about vaccine effectiveness or safety were more common among Black and multiracial caregivers. Logistical barriers were less common in the intervention vs. comparison district, with the largest difference among White students. In both districts, hospitalizations in 2017-18 were higher in Blacks (Intervention: 111.5 hospitalizations per 100,00; Comparison: 134.1 per 100,000) vs. other races/ethnicities. All-age influenza hospitalization incidence was lower in the intervention site vs. comparison site among White/API individuals in 2016-17 (DID -25.14 per 100,000 [95% CI: -40.14, -10.14]) and 2017-18 (-36.6 per 100,000 [-52.7, -20.5]) and Black older adults in 2017-18 (-282.2 per 100,000 (-508.4, -56.1]), but not in other groups.ConclusionsSLIV was associated with higher vaccination coverage and lower influenza hospitalization, but associations varied by race/ethnicity. SLIV alone may be insufficient to ensure equitable influenza outcomes
Effects of Influenza Vaccination in the United States During the 2017-2018 Influenza Season.
BACKGROUND: The severity of the 2017-2018 influenza season in the United States was high, with influenza A(H3N2) viruses predominating. Here, we report influenza vaccine effectiveness (VE) and estimate the number of vaccine-prevented influenza-associated illnesses, medical visits, hospitalizations, and deaths for the 2017-2018 influenza season.
METHODS: We used national age-specific estimates of 2017-2018 influenza vaccine coverage and disease burden. We estimated VE against medically attended reverse-transcription polymerase chain reaction-confirmed influenza virus infection in the ambulatory setting using a test-negative design. We used a compartmental model to estimate numbers of influenza-associated outcomes prevented by vaccination.
RESULTS: The VE against outpatient, medically attended, laboratory-confirmed influenza was 38% (95% confidence interval [CI], 31%-43%), including 22% (95% CI, 12%-31%) against influenza A(H3N2), 62% (95% CI, 50%-71%) against influenza A(H1N1)pdm09, and 50% (95% CI, 41%-57%) against influenza B. We estimated that influenza vaccination prevented 7.1 million (95% CrI, 5.4 million-9.3 million) illnesses, 3.7 million (95% CrI, 2.8 million-4.9 million) medical visits, 109 000 (95% CrI, 39 000-231 000) hospitalizations, and 8000 (95% credible interval [CrI], 1100-21 000) deaths. Vaccination prevented 10% of expected hospitalizations overall and 41% among young children (6 months-4 years).
CONCLUSIONS: Despite 38% VE, influenza vaccination reduced a substantial burden of influenza-associated illness, medical visits, hospitalizations, and deaths in the United States during the 2017-2018 season. Our results demonstrate the benefit of current influenza vaccination and the need for improved vaccines
Recommended from our members
Clinical Trends Among U.S. Adults Hospitalized With COVID-19, March to December 2020 : A Cross-Sectional Study.
BackgroundThe COVID-19 pandemic has caused substantial morbidity and mortality.ObjectiveTo describe monthly clinical trends among adults hospitalized with COVID-19.DesignPooled cross-sectional study.Setting99 counties in 14 states participating in the Coronavirus Disease 2019-Associated Hospitalization Surveillance Network (COVID-NET).PatientsU.S. adults (aged ≥18 years) hospitalized with laboratory-confirmed COVID-19 during 1 March to 31 December 2020.MeasurementsMonthly hospitalizations, intensive care unit (ICU) admissions, and in-hospital death rates per 100 000 persons in the population; monthly trends in weighted percentages of interventions, including ICU admission, mechanical ventilation, and vasopressor use, among an age- and site-stratified random sample of hospitalized case patients.ResultsAmong 116 743 hospitalized adults with COVID-19, the median age was 62 years, 50.7% were male, and 40.8% were non-Hispanic White. Monthly rates of hospitalization (105.3 per 100 000 persons), ICU admission (20.2 per 100 000 persons), and death (11.7 per 100 000 persons) peaked during December 2020. Rates of all 3 outcomes were highest among adults aged 65 years or older, males, and Hispanic or non-Hispanic Black persons. Among 18 508 sampled hospitalized adults, use of remdesivir and systemic corticosteroids increased from 1.7% and 18.9%, respectively, in March to 53.8% and 74.2%, respectively, in December. Frequency of ICU admission, mechanical ventilation, and vasopressor use decreased from March (37.8%, 27.8%, and 22.7%, respectively) to December (20.5%, 12.3%, and 12.8%, respectively); use of noninvasive respiratory support increased from March to December.LimitationCOVID-NET covers approximately 10% of the U.S. population; findings may not be generalizable to the entire country.ConclusionRates of COVID-19-associated hospitalization, ICU admission, and death were highest in December 2020, corresponding with the third peak of the U.S. pandemic. The frequency of intensive interventions for management of hospitalized patients decreased over time. These data provide a longitudinal assessment of clinical trends among adults hospitalized with COVID-19 before widespread implementation of COVID-19 vaccines.Primary funding sourceCenters for Disease Control and Prevention