295 research outputs found
The Fourteenth Data Release of the Sloan Digital Sky Survey : First Spectroscopic Data from the Extended Baryon Oscillation Spectroscopic Survey and from the Second Phase of the Apache Point Observatory Galactic Evolution Experiment
The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since 2014 July. This paper describes the second data release from this phase, and the 14th from SDSS overall (making this Data Release Fourteen or DR14). This release makes the data taken by SDSS-IV in its first two years of operation (2014-2016 July) public. Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey; the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data-driven machine-learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from the SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS web site (www.sdss.org) has been updated for this release and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020 and will be followed by SDSS-V.Peer reviewe
A Distant Stellar Companion in the Upsilon Andromedae System
Upsilon Andromedae is an F8V star known to have an extrasolar system of at
least 3 planets in orbit around it. Here we report the discovery of a low-mass
stellar companion to this system. The companion shares common proper motion,
lies at a projected separation of ~750 AU, and has a spectral type of M4.5V.
The effect of this star on the radial velocity of the brighter primary is
negligible, but this system provides an interesting testbed for stellar
planetary formation theory and understanding dynamical stability since it is
the first multiple planetary system known in a multiple stellar system.Comment: 4 pages, 2 figures, to be published in June ApJ Letter
History of the Innovation of Damage Control for Management of Trauma Patients: 1902-2016
Objective: To review the history of the innovation of damage control (DC) for management of trauma patients. Background: DC is an important development in trauma care that provides a valuable case study in surgical innovation. Methods: We searched bibliographic databases (1950-2015), conference abstracts (2009-2013), Web sites, textbooks, and bibliographies for articles relating to trauma DC. The innovation of DC was then classified according to the Innovation, Development, Exploration, Assessment, and Long-term study model of surgical innovation. Results: The innovation\u27\u27 of DC originated from the use of therapeutic liver packing, a practice that had previously been abandoned after World War II because of adverse events. It then developed\u27\u27 into abbreviated laparotomy using rapid conservative operative techniques.\u27\u27 Subsequent exploration\u27\u27 resulted in the application of DC to increasingly complex abdominal injuries and thoracic, peripheral vascular, and orthopedic injuries. Increasing use of DC laparotomy was followed by growing reports of postinjury abdominal compartment syndrome and prophylactic use of the open abdomen to prevent intra-abdominal hypertension after DC laparotomy. By the year 2000, DC surgery had been widely adopted and was recommended for use in surgical journals, textbooks, and teaching courses ( assessment\u27\u27 stage of innovation). Long-term study\u27\u27 of DC is raising questions about whether the procedure should be used more selectively in the context of improving resuscitation practices. Conclusions: The history of the innovation of DC illustrates how a previously abandoned surgical technique was adapted and readopted in response to an increased understanding of trauma patient physiology and changing injury patterns and trauma resuscitation practices
The Exemplar T8 Subdwarf Companion of Wolf 1130
We have discovered a wide separation (188.5") T8 subdwarf companion to the
sdM1.5+WD binary Wolf 1130. Companionship of WISE J200520.38+542433.9 is
verified through common proper motion over a ~3 year baseline. Wolf 1130 is
located 15.83 +/- 0.96 parsecs from the Sun, placing the brown dwarf at a
projected separation of ~3000 AU. Near-infrared colors and medium resolution
(R~2000-4000) spectroscopy establish the uniqueness of this system as a
high-gravity, low-metallicity benchmark. Although there are a number of
low-metallicity T dwarfs in the literature, WISE J200520.38+542433.9 has the
most extreme inferred metallicity to date with [Fe/H] = -0.64 +/- 0.17 based on
Wolf 1130. Model comparisons to this exemplar late-type subdwarf support it
having an old age, a low metallicity, and a small radius. However, the
spectroscopic peculiarities of WISE J200520.38+542433.9 underscore the
importance of developing the low-metallicity parameter space of the most
current atmospheric models.Comment: Accepted to ApJ on 05 September 2013; 33 pages in preprint format, 8
figures, 3 table
NEOWISE-R Observation of the Coolest Known Brown Dwarf
The Wide-field Infrared Survey Explorer (WISE) spacecraft has been
reactivated as NEOWISE-R to characterize and search for Near Earth Objects. The
brown dwarf WISE J085510.83-071442.5 has now been reobserved by NEOWISE-R, and
we confirm the results of Luhman (2014b), who found a very low effective
temperature ( K), a very high proper motion (8.1 +/- 0.1
arcsec/yr) , and a large parallax (454 +/- 45 mas). The large proper motion has
separated the brown dwarf from the background sources that influenced the 2010
WISE data, allowing a measurement of a very red WISE color of W1-W2
mag. A re-analysis of the 2010 WISE astrometry using only the W2 band, combined
with the new NEOWISE-R 2014 position, gives an improved parallax of 448 +/- 33
mas and proper motion of 8.08 +/- 0.05\; arcsec/yr. These are all consistent
with Luhman (2014b).Comment: 6 pages, AJ accepte
Discovery of a Bright Field Methane (T-type) Brown Dwarf by 2MASS
We report the discovery of a bright (J = 13.830.03) methane brown dwarf,
or T dwarf, by the Two Micron All Sky Survey. This object, 2MASSI
J0559191-140448, is the first brown dwarf identified by the newly commissioned
CorMASS instrument mounted on the Palomar 60-inch Telescope. Near-infrared
spectra from 0.9 - 2.35 \micron show characteristic CH bands at 1.1, 1.3,
1.6, and 2.2 \micron, which are significantly shallower than those seen in
other T dwarfs discovered to date. Coupled with the detection of an FeH band at
0.9896 \micron and two sets of K I doublets at J-band, we propose that 2MASS
J0559-14 is a warm T dwarf, close to the transition between L and T spectral
classes. The brightness of this object makes it a good candidate for detailed
investigation over a broad wavelength regime and at higher resolution.Comment: 21 pages, 3 figures, 2 tables, accepted to AJ for publication August
200
Discovery of a Brown Dwarf Companion to Gliese 570ABC: A 2MASS T Dwarf Significantly Cooler than Gliese 229B
We report the discovery of a widely separated (258\farcs3\pm0\farcs4) T
dwarf companion to the Gl 570ABC system. This new component, Gl 570D, was
initially identified from the Two Micron All Sky Survey (2MASS). Its
near-infrared spectrum shows the 1.6 and 2.2 \micron CH absorption bands
characteristic of T dwarfs, while its common proper motion with the Gl 570ABC
system confirms companionship. Gl 570D (M = 16.470.07) is nearly a
full magnitude dimmer than the only other known T dwarf companion, Gl 229B, and
estimates of L = (2.80.3)x10 L_{\sun} and T = 75050
K make it significantly cooler and less luminous than any other known brown
dwarf companion. Using evolutionary models by Burrows et al. and an adopted age
of 2-10 Gyr, we derive a mass estimate of 5020 M for this object.Comment: 13 pages, 2 figures, 2 tables, accepted by ApJ
Y Dwarf Trigonometric Parallaxes from the Spitzer Space Telescope
Y dwarfs provide a unique opportunity to study free-floating objects with masses <30 M_(Jup) and atmospheric temperatures approaching those of known Jupiter-like exoplanets. Obtaining distances to these objects is an essential step toward characterizing their absolute physical properties. Using Spitzer's Infrared Array Camera (IRAC) [4.5] images taken over baselines of ~2–7 years, we measure astrometric distances for 22 late-T and early Y dwarfs, including updated parallaxes for 18 objects and new parallax measurements for 4 objects. These parallaxes will make it possible to explore the physical parameter space occupied by the coldest brown dwarfs. We also present the discovery of six new late-T dwarfs, updated spectra of two T dwarfs, and the reclassification of a new Y dwarf, WISE J033605.04−014351.0, based on Keck/NIRSPEC J-band spectroscopy. Assuming that effective temperatures are inversely proportional to absolute magnitude, we examine trends in the evolution of the spectral energy distributions of brown dwarfs with decreasing effective temperature. Surprisingly, the Y dwarf class encompasses a large range in absolute magnitude in the near- to mid-infrared photometric bandpasses, demonstrating a larger range of effective temperatures than previously assumed. This sample will be ideal for obtaining mid-infrared spectra with the James Webb Space Telescope because their known distances will make it easier to measure absolute physical properties
- …