15 research outputs found
Recommended from our members
VOC Control in Kraft Mills
The formation of volatile organic compounds (VOCs), such as methanol, in kraft mills has been an environmental concern. Methanol is soluble in water and can increase the biochemical oxygen demand. Furthermore, it can also be released into atmosphere at the process temperatures of kraft mill-streams. The Cluster Rule of the EPA now requires the control of the release of methanol in pulp and paper mills. This research program was conducted to develop a computer simulation tool for mills to predict VOC air emissions. To achieve the objective of the research program, much effort was made in the development of analytical techniques for the analysis of VOC and determination of vapor liquid partitioning coefficient of VOCs in kraft mill-streams using headspace gas chromatography. With the developed analytical tool, methanol formation in alkaline pulping was studied in laboratory to provide benchmark data of the amount of methanol formation in pulping in kraft mills and for the validation of VOC formation and vapor-liquid equilibrium submodels. Several millwide air and liquid samplings were conducted using the analytical tools developed to validate the simulation tool. The VOC predictive simulation model was developed based on the basic chemical engineering concepts, i.e., reaction kinetics, vapor liquid equilibrium, combined with computerized mass and energy balances. Four kraft mill case studies (a continuous digester, two brownstock washing lines, and a pre-evaporator system) are presented and compared with mill measurements. These case studies provide valuable, technical information for issues related to MACT I and MACT II compliance, such as condensate collection and Clean-Condensate-Alternatives (CCA)
f(R) theories of gravity in Palatini approach matched with observations
We investigate the viability of f(R) theories in the framework of the
Palatini approach as solutions to the problem of the observed accelerated
expansion of the universe. Two physically motivated popular choices for f(R)
are considered: power law, f(R) = \beta R^n, and logarithmic, f(R) = \alpha
\ln{R}. Under the Palatini approach, both Lagrangians give rise to cosmological
models comprising only standard matter and undergoing a present phase of
accelerated expansion. We use the Hubble diagram of type Ia Supernovae and the
data on the gas mass fraction in relaxed galaxy clusters to see whether these
models are able to reproduce what is observed and to constrain their
parameters. It turns out that they are indeed able to fit the data with values
of the Hubble constant and of the matter density parameter in agreement with
some model independent estimates, but the today deceleration parameter is
higher than what is measured in the concordance LambdaCDM model.Comment: 14 pages, 8 figures, submitted to Physical Review
Extended Theories of Gravity and their Cosmological and Astrophysical Applications
We review Extended Theories of Gravity in metric and Palatini formalism
pointing out their cosmological and astrophysical application. The aim is to
propose an alternative approach to solve the puzzles connected to dark
components.Comment: 44 pages, 11 figure
Recommended from our members
VOC Control in Kraft Mills - Final Report: Task A and Task B
The formation of volatile organic compounds (VOCs), such as methanol, in kraft mills has been an environmental concern. Methanol is soluble in water and can increase the biochemical oxygen demand. Furthermore, it can also be released into atmosphere at the process temperatures of kraft mill-streams. The Cluster Rule of the EPA now requires the control of the release of methanol in pulp and paper mills. This research program was conducted to develop a computer simulation tool for mills to predict VOC air emissions. To achieve the objective of the research program, much effort was made in the development of analytical techniques for the analysis of VOC and determination of vapor liquid partitioning coefficient of VOCs in kraft mill-streams using headspace gas chromatography. With the developed analytical tool, methanol formation in alkaline pulping was studied in laboratory to provide benchmark data of the amount of methanol formation in pulping in kraft mills and for the validation of VOC formation and vapor-liquid equilibrium submodels. Several millwide air and liquid samplings were conducted using the analytical tools developed to validate the simulation tool. The VOC predictive simulation model was developed based on the basic chemical engineering concepts, i.e., reaction kinetics, vapor liquid equilibrium, combined with computerized mass and energy balances. Four kraft mill case studies (a continuous digester, two brownstock washing lines, and a pre-evaporator system) are presented and compared with mill measurements. These case studies provide valuable, technical information for issues related to MACT I and MACT II compliance, such as condensate collection and Clean-Condensate-Alternatives (CCA)