58 research outputs found

    Constitutive innate immunity of tropical House Wrens varies with season and reproductive activity

    Get PDF
    In lowland Neotropical regions, where air temperature and day length remain relatively constant year round, seasonality is determined primarily by changes in rainfall. The wet season triggers the start of breeding for many Neotropical birds but also alters the antigenic environment, likely increasing the risk of disease transmission. We explored 2 hypotheses about temporal variation in constitutive innate immunity of a Neotropical bird, the House Wren (Troglodytes aedon). The antigen response hypothesis proposes that Neotropical wrens upregulate their immune function in the wet season either in anticipation of or in response to vectors that become more prevalent. The resource constraint hypothesis proposes that during periods of putative high resource demand, such as when parents are feeding young, immune function should be compromised and downregulated. Controlling for reproductive stage, we found that microbicidal capacity of blood against Escherichia coli was higher in the wet than the dry season, consistent with the antigen response hypothesis. Phagocytosis of E. coli and Staphylococcus aureus did not differ between wet and dry seasons. Microbicidal capacity and H/L ratio of tropical House Wrens did not vary among reproductive stages, and our data offered no support for the idea that immune function is compromised during the period when parents are feeding young

    Consumption of pasteurized human lysozyme transgenic goats’ milk alters serum metabolite profile in young pigs

    Get PDF
    Nutrition, bacterial composition of the gastrointestinal tract, and general health status can all influence the metabolic profile of an organism. We previously demonstrated that feeding pasteurized transgenic goats’ milk expressing human lysozyme (hLZ) can positively impact intestinal morphology and modulate intestinal microbiota composition in young pigs. The objective of this study was to further examine the effect of consuming hLZ-containing milk on young pigs by profiling serum metabolites. Pigs were placed into two groups and fed a diet of solid food and either control (non-transgenic) goats’ milk or milk from hLZ-transgenic goats for 6 weeks. Serum samples were collected at the end of the feeding period and global metabolite profiling was performed. For a total of 225 metabolites (160 known, 65 unknown) semi-quantitative data was obtained. Levels of 18 known and 4 unknown metabolites differed significantly between the two groups with the direction of change in 13 of the 18 known metabolites being almost entirely congruent with improved health status, particularly in terms of the gastrointestinal tract health and immune response, with the effects of the other five being neutral or unknown. These results further support our hypothesis that consumption of hLZ-containing milk is beneficial to health

    Capture stress and the bactericidal competence of blood and plasma in five species of tropical birds

    Get PDF
    In wild birds, relatively little is known about intra- or interspecific variation in immunological capabilities, and even less is known about the effects of stress on immune function. Immunological assays adaptable to field settings and suitable for a wide variety of taxa will prove most useful for addressing these issues. We describe a novel application of an in vitro technique that measures the intrinsic bacteria-killing abilities of blood. We assessed the capacities of whole blood and plasma from free-living individuals of five tropical bird species to kill a nonpathogenic strain of E. coli before and after the birds experienced an acute stress. Killing invasive bacteria is a fundamental immune function, and the bacteria-killing assay measures constitutive, innate immunity integrated across circulating cell and protein components. Killing ability varied significantly across species, with common ground doves exhibiting the lowest levels and blue-crowned motmots exhibiting the highest levels. Across species, plasma killed bacteria as effectively as whole blood, and higher concentrations of plasma killed significantly better. One hour of acute stress reduced killing ability by up to 40%. This assay is expected to be useful in evolutionary and ecological studies dealing with physiological and immunological differences in birds

    Prevention of immunological stress contributes to the growth-permitting ability of dietary antibiotics in chicks

    No full text
    The growth-permitting ability of antibiotics fed to broiler chicks was studied as it relates to the state of activation of the immune system. In Experiment 1, chicks were fed two levels of antibiotics (0 or 100 mg streptomycin + 100 mg penicillin/kg diet) and were raised either in an environment with poor sanitation to create a chronic immune stress or in a clean environment. Chicks raised in the unsanitary environment and not fed antibiotics had significantly lower (P < 0.05) rates of weight gain and efficiencies of feed utilization, and higher levels of plasma interleukin-1, compared with chicks raised in the clean environment or chicks raised in the unsanitary environment and fed antibiotics. Adding antibiotics to the diet of birds in the clean environment did not affect any variable. In Experiment 2, chicks were raised in a conventional environment and fed two levels of an antibiotic (0 or 100 mg tetracycline/kg diet). After a 15-d feeding period, half of the chicks were injected with Salmonella typhimurium lipopolysaccharide to create an acute immunologic stress. Feeding antibiotic resulted in improved weight gain, feed consumption and efficiency of feed utilization. Lipopolysaccharide-injected birds developed heavier livers, spleens and intestines relative to body weights and higher rectal temperatures and hepatic metallothionein concentrations, presumably due to an immunologic stress. Omitting antibiotic from the diet resulted in similar changes. These results indicate that feeding antibiotics may permit growth by preventing immunologic stress and associated metabolic changes brought about by monokines including interleukin-1

    Capture Stress and the Bactericidal Competence of Blood and Plasma in Five Species of Tropical Birds

    No full text
    In wild birds, relatively little is known about intra- or interspecific variation in immunological capabilities, and even less is known about the effects of stress on immune function. Immunological assays adaptable to field settings and suitable for a wide variety of taxa will prove most useful for addressing these issues. We describe a novel application of an in vitro technique that measures the intrinsic bacteria-killing abilities of blood. We assessed the capacities of whole blood and plasma from free-living individuals of five tropical bird species to kill a nonpathogenic strain of E. coli before and after the birds experienced an acute stress. Killing invasive bacteria is a fundamental immune function, and the bacteria-killing assay measures constitutive, innate immunity integrated across circulating cell and protein components. Killing ability varied significantly across species, with common ground doves exhibiting the lowest levels and blue-crowned motmots exhibiting the highest levels. Across species, plasma killed bacteria as effectively as whole blood, and higher concentrations of plasma killed significantly better. One hour of acute stress reduced killing ability by up to 40%. This assay is expected to be useful in evolutionary and ecological studies dealing with physiological and immunological differences in birds.

    Variation with Land Use of Immune Function and Prevalence of Avian Pox in Galapagos Finches

    No full text
    Introduced disease has been implicated in recent wildlife extinctions and population declines worldwide. Both anthropogenic-induced change and natural environmental features can affect pathogen spread. Furthermore, environmental disturbance can result in changes in stress physiology, nutrition, and social structure, which in turn can suppress immune system function. However, it remains unknown whether landscape variation results in heterogeneity in host resistance to pathogens. Avian pox virus, a pathogen implicated in avian declines and extinctions in Hawaii, was introduced to the Galapagos in the 1890 s, and prevalence (total number of current infections) has increased recently in finches. We tested whether prevalence and recovery trends in 7 species of Galapagos finches varied by elevation or human land use. To do so, we used infection data obtained from 545 wild-caught birds. In addition, we determined whether annual changes in 4 aspects of innate immune function (complement protein activity, natural antibody activity, concentration of PIT54 protein, and heterophil:lymphocyte ratio) varied by elevation or land use. Prevalence and recovery rates did not vary by elevation from 2008 to 2009. Avian pox prevalence and proportion of recovered individuals in undeveloped and urban areas did not change from 2008 to 2009. In agricultural areas, avian pox prevalence increased 8-fold (from 2% to 17% of 234 individuals sampled) and proportion of recovered individuals increased (11% to 19%) from 2008 to 2009. These results suggest high disease-related mortality. Variation in immune function across human land-use types correlated with variation in both increased prevalence and susceptibility, which indicates changes in innate immune function may underlie changes in disease susceptibility. Our results suggest anthropogenic disturbance, in particular agricultural practices, may underlie immunological changes in host species that themselves contribute to pathogen emergence.publishe

    Increasing avian pox prevalence varies by species, and with immune function, in Galápagos finches

    No full text
    Avian pox virus (APV), a pathogen implicated as a major factor in avian declines and extinctions in Hawaii, was introduced to the Galápagos in the late 1890s. While APV is thought to have increased in prevalence in recent years, no study has carefully evaluated the threat this pathogen poses to the Galápagos avifauna. In this paper, we examine the course of the APV epidemic in seven species of Galápagos finch on Santa Cruz Island (Geospiza fuliginosa, G. fortis, G. magnirostris, G. scandens, Camarhynchus parvulus, Cactospiza pallida, and Certhidea olivacea). We describe temporal changes in the prevalence of the avian pox disease (AP) caused by APV and the proportion of individuals that have recovered from AP from 2000 to 2009. Then we examine species differences in susceptibility to AP and how this variation correlates with differences in innate immune function. We show that AP prevalence has increased dramatically from 2000 to 2009. However, this increase in prevalence varied by species; specifically, we found that prevalence increased rapidly in G. fuliginosa, C. parvulus, G. scandens, and C. olivacea, but not at all in G. fortis. Furthermore, innate immune function varies between years and species, and this variation correlates with increased prevalence and species variation in susceptibility to APV. To our knowledge, this is the first study to demonstrate significant interannual variation in innate immune function in wild birds, and to show that this immune variation correlates with susceptibility to an introduced disease.publishe
    corecore