16,656 research outputs found

    Pair plasma cushions in the hole-boring scenario

    Full text link
    Pulses from a 10 PW laser are predicted to produce large numbers of gamma-rays and electron-positron pairs on hitting a solid target. However, a pair plasma, if it accumulates in front of the target, may partially shield it from the pulse. Using stationary, one-dimensional solutions of the two-fluid (electron-positron) and Maxwell equations, including a classical radiation reaction term, we examine this effect in the hole-boring scenario. We find the collective effects of a pair plasma "cushion" substantially reduce the reflectivity, converting the absorbed flux into high-energy gamma-rays. There is also a modest increase in the laser intensity needed to achieve threshold for a non-linear pair cascade.Comment: 17 pages, 5 figures. Accepted for publication in Plasma Physics and Controlled Fusion. Typos corrected, reference update

    Particle acceleration at ultrarelativistic shocks: an eigenfunction method

    Get PDF
    We extend the eigenfunction method of computing the power-law spectrum of particles accelerated at a relativistic shock fronts to apply to shocks of arbitrarily high Lorentz factor. In agreement with the findings of Monte-Carlo simulations, we find the index of the power-law distribution of accelerated particles which undergo isotropic diffusion in angle at an ultrarelativistic, unmagnetized shock is s=4.23 (where s=-d(ln f)/dp with f the Lorentz invariant phase-space density and p the momentum). This corresponds to a synchrotron index for uncooled electrons of a=0.62 (taking cooling into account a=1.12), where a=-d(ln F)/dn, F is the radiation flux and n the frequency. We also present an approximate analytic expression for the angular distribution of accelerated particles, which displays the effect of particle trapping by the shock: compared with the non-relativistic case the angular distribution is weighted more towards the plane of the shock and away from its normal. We investigate the sensitivity of our results to the transport properties of the particles and the presence of a magnetic field. Shocks in which the ratio of Poynting to kinetic energy flux upstream is not small are less compressive and lead to larger values of ss.Comment: Minor additions on publicatio

    Polarisation of high-energy emission in a pulsar striped wind

    Full text link
    Recent observations of the polarisation of the optical pulses from the Crab pulsar motivated detailed comparative studies of the emission predicted by the polar cap, the outer gap and the two-pole caustics models. In this work, we study the polarisation properties of the synchrotron emission emanating from the striped wind model. We use an explicit asymptotic solution for the large-scale field structure related to the oblique split monopole and valid for the case of an ultra-relativistic plasma. This is combined with a crude model for the emissivity of the striped wind and of the magnetic field within the dissipating stripes themselves. We calculate the polarisation properties of the high-energy pulsed emission and compare our results with optical observations of the Crab pulsar. The resulting radiation is linearly polarised. In the off-pulse region, the electric vector lies in the direction of the projection on the sky of the rotation axis of the pulsar, in good agreement with the data. Other properties such as a reduced degree of polarisation and a characteristic sweep of the polarisation angle within the pulses are also reproduced.Comment: Proceedings of the 363. WE-Heraeus Seminar on: Neutron Stars and Pulsars (Posters and contributed talks) Physikzentrum Bad Honnef, Germany, May.14-19, 2006, eds. W.Becker, H.H.Huang, MPE Report 291, pp.108-11

    Iowa Soils Need Nitrogen

    Get PDF
    We are not doing a very good job of keeping up the available nitrogen content in Iowa soils. W e could step up our yields and we would get a lot more good from the phosphorus and potassium fertilizers which we use if we had more available nitrogen in our soils

    Prolific pair production with high-power lasers

    Full text link
    Prolific electron-positron pair production is possible at laser intensities approaching 10^{24} W/cm^2 at a wavelength of 1 micron. An analysis of electron trajectories and interactions at the nodes (B=0) of two counter-propagating, circularly polarised laser beams shows that a cascade of gamma-rays and pairs develops. The geometry is generalised qualitatively to linear polarisation and laser beams incident on a solid target.Comment: 4 pages, 1 figure, minor revisions, accepted for publication in Physical Review Letter

    Kinetic instabilities that limit {\beta} in the edge of a tokamak plasma: a picture of an H-mode pedestal

    Full text link
    Plasma equilibria reconstructed from the Mega-Amp Spherical Tokamak (MAST) have sufficient resolution to capture plasma evolution during the short period between edge-localized modes (ELMs). Immediately after the ELM steep gradients in pressure, P, and density, ne, form pedestals close to the separatrix, and they then expand into the core. Local gyrokinetic analysis over the ELM cycle reveals the dominant microinstabilities at perpendicular wavelengths of the order of the ion Larmor radius. These are kinetic ballooning modes (KBMs) in the pedestal and microtearing modes (MTMs) in the core close to the pedestal top. The evolving growth rate spectra, supported by gyrokinetic analysis using artificial local equilibrium scans, suggest a new physical picture for the formation and arrest of this pedestal.Comment: Final version as it appeared in PRL (March 2012). Minor improvements include: shortened abstract, and better colour table for figures. 4 pages, 6 figure
    corecore