19,528 research outputs found

    Triton: A hot potato

    Get PDF
    The effect of sunlight on the surface of Triton was studied. Widely disparate models of the active geysers observed during Voyager 2 flyby were proposed, with a solar energy source almost their only feature. Yet Triton derives more of its heat from internal sources (energy released by the radioactive decay) than any other icy satellite. The effect of this relatively large internal heat on the observable behavior of volatiles on Triton's surface is investigated. The following subject areas are covered: the Global Energy Budget; insulation polar caps; effect on frost stability; mantle convection; and cryovolcanism

    Inertial energy storage hardware definition study (ring rotor)

    Get PDF
    Rotor analysis, interference stresses, fabrication/assembly, failure analysis, ring tolerances, stren plots, and drawings are discussed

    The role of nonuniform internal heating in Triton's energy budget

    Get PDF
    Triton's large heliocentric distance and high albedo, combined with its unusually large silicate mass fraction, make internal heating more important in its energy budget than in that of any other icy satellite. Brown et al. have recently estimated that the average radiogenic heat flux (which is probably between 3.3 and 6.6 mW/sq m depending on core size and composition) may equal 5 to 20 pct. of the average absorbed insolation. On a global scale, this additional energy input appreciably increases the thermal emissivity required to be consistent with the observed surface temperature. Brown et al. also speculated that spatial variations of the internal flux may change the local sublimation deposition balance enough to lead to observable modifications of the distribution of volatiles on Triton's surface. An attempt is made to estimate the magnitude of internal heat flux variations due to the insulating effect of the polar caps, to mantle convection, and to cryovolcanism; the importance is evaluated of these variations in modifying the volatile distribution

    Exploiting multimedia in creating and analysing multimedia Web archives

    No full text
    The data contained on the web and the social web are inherently multimedia and consist of a mixture of textual, visual and audio modalities. Community memories embodied on the web and social web contain a rich mixture of data from these modalities. In many ways, the web is the greatest resource ever created by human-kind. However, due to the dynamic and distributed nature of the web, its content changes, appears and disappears on a daily basis. Web archiving provides a way of capturing snapshots of (parts of) the web for preservation and future analysis. This paper provides an overview of techniques we have developed within the context of the EU funded ARCOMEM (ARchiving COmmunity MEMories) project to allow multimedia web content to be leveraged during the archival process and for post-archival analysis. Through a set of use cases, we explore several practical applications of multimedia analytics within the realm of web archiving, web archive analysis and multimedia data on the web in general
    corecore