14 research outputs found
Convective regularization for optical flow
We argue that the time derivative in a fixed coordinate frame may not be the
most appropriate measure of time regularity of an optical flow field. Instead,
for a given velocity field we consider the convective acceleration which describes the acceleration of objects moving according to
. Consequently we investigate the suitability of the nonconvex functional
as a regularization term for optical flow. We
demonstrate that this term acts as both a spatial and a temporal regularizer
and has an intrinsic edge-preserving property. We incorporate it into a
contrast invariant and time-regularized variant of the Horn-Schunck functional,
prove existence of minimizers and verify experimentally that it addresses some
of the problems of basic quadratic models. For the minimization we use an
iterative scheme that approximates the original nonlinear problem with a
sequence of linear ones. We believe that the convective acceleration may be
gainfully introduced in a variety of optical flow models
Optical Flow on Moving Manifolds
Optical flow is a powerful tool for the study and analysis of motion in a
sequence of images. In this article we study a Horn-Schunck type
spatio-temporal regularization functional for image sequences that have a
non-Euclidean, time varying image domain. To that end we construct a Riemannian
metric that describes the deformation and structure of this evolving surface.
The resulting functional can be seen as natural geometric generalization of
previous work by Weickert and Schn\"orr (2001) and Lef\`evre and Baillet (2008)
for static image domains. In this work we show the existence and wellposedness
of the corresponding optical flow problem and derive necessary and sufficient
optimality conditions. We demonstrate the functionality of our approach in a
series of experiments using both synthetic and real data.Comment: 26 pages, 6 figure
Decomposition of Optical Flow on the Sphere
We propose a number of variational regularisation methods for the estimation
and decomposition of motion fields on the -sphere. While motion estimation
is based on the optical flow equation, the presented decomposition models are
motivated by recent trends in image analysis. In particular we treat
decomposition as well as hierarchical decomposition. Helmholtz decomposition of
motion fields is obtained as a natural by-product of the chosen numerical
method based on vector spherical harmonics. All models are tested on time-lapse
microscopy data depicting fluorescently labelled endodermal cells of a
zebrafish embryo.Comment: The final publication is available at link.springer.co
Uncertainty Quantification for Scale-Space Blob Detection
We consider the problem of blob detection for uncertain images, such as
images that have to be inferred from noisy measurements. Extending recent work
motivated by astronomical applications, we propose an approach that represents
the uncertainty in the position and size of a blob by a region in a
three-dimensional scale space. Motivated by classic tube methods such as the
taut-string algorithm, these regions are obtained from level sets of the
minimizer of a total variation functional within a high-dimensional tube. The
resulting non-smooth optimization problem is challenging to solve, and we
compare various numerical approaches for its solution and relate them to the
literature on constrained total variation denoising. Finally, the proposed
methodology is illustrated on numerical experiments for deconvolution and
models related to astrophysics, where it is demonstrated that it allows to
represent the uncertainty in the detected blobs in a precise and physically
interpretable way
Optical flow on evolving surfaces
Laser-Scanning-Mikroskopie gekoppelt mit der Technologie fluoreszierender Proteine stellt ein vielversprechendes bildgebendes Verfahren fĂŒr biomedizinische Anwendungen dar, vor allem weil es dreidimensionale Zeitrafferaufnahmen lebender Organismen mit zellulĂ€rer Auflösung ermöglicht. Eine verlĂ€ssliche Analyse der gewonnenen Daten auf Zellbewegungen hat das Potenzial zu einem besseren
VerstÀndnis zellulÀrer VorgÀnge beizutragen. Die SchÀtzung von Objektbewegungen aus einer Folge von Bildern stellt das zentrale Thema dieser Arbeit dar. Die konkrete Motivation hingegen ist eine Reihe von Aufnahmen eines Laser-Scanning-Mikroskops, auf denen ein Zebrafischembryo zu sehen ist, dessen Entoderm mit einem fluoreszierenden Protein markiert wurde. Alle mathematischen Modelle, die im Folgenden vorgestellt werden, bauen auf der Tatsache auf, dass wÀhrend der Gastrulation das Entoderm eine sogenannte Monolage bildet. Die Bewegungen der markierten Zellen werden infolgedessen als optischer Fluss auf einer HyperflÀche des R^3 formuliert und mittels Tichonow-Regularisierung
berechnet.
ZunÀchst nehmen wir an, dass besagte OberflÀche eine statische SphÀre ist, und untersuchen verschiedene Regularisierungsfunktionale sowie Zerlegungsmodelle
fĂŒr Vektorfelder. Basierend auf einer Entwicklung in vektorwertige KugelflĂ€chenfunktionen werden zunĂ€chst der optische Fluss und dessen Helmholtz-Zerlegung berechnet. Um mehr Einsicht in die Zellbewegungsmuster zu bekommen, werden darĂŒberhinaus zwei Bildzerlegungsmodelle, nĂ€mlich u + v und hierarchische Zerlegung, auf den optischen Fluss umgelegt.
In einem zweiten Ansatz wird versucht das Entoderm mit gröĂerer Genauigkeit zu modellieren, was soviel bedeutet wie auf die beiden Annahmen, dass die OberflĂ€che zeitkonstant und kugelförmig sei, zu verzichten. Folglich wird ein optisches FluĂmodell fĂŒr Daten, deren Definitionsbereich eine sich bewegende Mannigfaltikeit M_t ist, hergeleitet, und das Funktional von Horn und Schunck sowie dessen raumzeitliche Erweiterung von Weickert und Schnörr auf die neue Situation ĂŒbertragen. Hierbei verfolgen wir zwei unterschiedliche
Strategien. Auf der einen Seite wÀhlen wir L^2-Normen der projizierten Ableitungen als Regularisierungsterm. Auf der anderen Seite ist es möglich einen Zugang zu wÀhlen, welcher stÀrker differentialgeometrisch motiviert ist. Die zweite
Strategie besteht demnach darin als Regulariserungsfunktional eine gewichtete Sobolev-Norm bezĂŒglich einer konstruierten Metrik auf der Raumzeit-Mannigfaltigkeit zu wĂ€hlen. SchlieĂlich wird bewiesen, dass das resultierende Variationsproblem korrekt gestellt ist. Alle Modelle wurden implementiert und an besagten Zebrafischdaten, beziehungsweise an synthetischen Daten in letzterem Fall, getestet.The combination of laser-scanning microscopy and fluorescent protein technology is a powerful imaging technique for biomedical applications, as it allows for volumetric time-lapse (4D) imaging of living organisms at cellular resolution. A reliable motion analysis of the produced datasets can contribute to a better understanding of cellular dynamics. While the problem of motion estimation from a given sequence of images is the central theme of this thesis, the particular motivation is a set of laser-scanning-microscopy images. This dataset depicts a zebrafish embryo during gastrulation whose endodermal cells have been labelled with a fluorescent protein. Throughout we exploit the fact that during this period endodermal cells form a mono-layer. Consequently, we formulate the problem of estimating their velocities as a Tikhonov-regularized optical flow problem on a surface.
First, we assume the surface to be a static sphere and study different regularization functionals as well as vector field decomposition models. More precisely, expanding vector fields in tangent vector spherical harmonics we compute the optical flow on the sphere together with its Helmholtz decomposition. Furthermore, in order to gain deeper insight into cell migration patterns, we translate two recent image decomposition models to the optical flow setting, namely u+v and hierarchical image decomposition.
In a second approach we try to model the endoderm layer more accurately. This means dropping both the assumption that it is spherical and that is does not alter its shape over time. In consequence, we devise an optical flow model for images defined on a moving manifold M_t and extend the classical Horn-Schunck functional and its spatiotemporal extension by Weickert and Schnörr to the new setting. For this extension we make two different suggestions. On the
one hand, we propose to regularize with L^2 norms of projected derivatives. On the other hand, this extension can be done from a more differential geometric viewpoint: by regularizing with a weighted Sobolev norm with respect to an
almost product metric on the time-space manifold . Finally, we prove well-posedness and test the proposed models on both synthetic data and the aforementioned microscopy data