191 research outputs found

    HASH(0x563d440f6818)

    Get PDF
    HASH(0x563d44039638)HASH(0x563d43eda1a8

    Development of microsatellite and mating type markers for the pine needle pathogen Lecanosticta acicola

    Get PDF
    Lecanosticta acicola is an ascomycete that causes brown spot needle blight of pine species in many regions of the world. This pathogen is responsible for a major disease of Pinus palustris in the USA and is a quarantine organism in Europe. In order to study the genetic diversity and patterns of spread of L. acicola, eleven microsatellite markers and two mating type markers were developed. An enrichment protocol was used to isolate microsatellite-rich DNA regions and 18 primer pairs were designed to flank these regions, of which eleven were polymorphic. A total of 93 alleles were obtained across all loci from forty isolates of L. acicola from the USA with an allelic diversity range of 0.095 to 0.931 per locus. Cross-species amplification with some of the markers was obtained with L. gloeospora, L. guatemalensis and Dothistroma septosporum, but not with D. pini. Mating type (MAT) markers amplifying both idiomorphs were also developed to determine mating type distribution in populations. These markers were designed based on alignments of both idiomorphs of nine closely related plant pathogens and a protocol for multiplex PCR amplification of the MAT loci was optimised. The MAT markers are not species specific and also amplify the MAT loci in Dothistroma septosporum, D. pini, L. gloeospora and L. guatemalensis. Both types of genetic markers developed in this study will be valuable for future investigations of the population structure, genetic diversity and invasion history of L. acicola on a global scale.Financial support to Josef Janoušek from the AKTION Czech Republic – Austria (project 58p23), the Scholarship Foundation of the Republic of Austria (OeAD-GmbH, Austria),theHlavka Foundation (Czech Republic; for internship at Massey University, New Zealand) and the Intern Grant Agency of the Faculty of Forestry and Wood Technology (Mendel University in Brno, Czech Republic).The project was supported financially by COST CZ LD12031 (DIAROD), the FPS COST Action FP1102 (DIAROD) and the European Union’s Seventh Framework Programme FP7 2007–2013 (KBBE 2009–3) under grant agreement 245268 ISEFOR.http://link.springer.com/journal/13313hb201

    Genetic and Epigenetic Factors at COL2A1 and ABCA4 Influence Clinical Outcome in Congenital Toxoplasmosis

    Get PDF
    Background: Primary Toxoplasma gondii infection during pregnancy can be transmitted to the fetus. At birth, infected infants may have intracranial calcification, hydrocephalus, and retinochoroiditis, and new ocular lesions can occur at any age after birth. Not all children who acquire infection in utero develop these clinical signs of disease. Whilst severity of disease is influenced by trimester in which infection is acquired by the mother, other factors including genetic predisposition may contribute.Methods and Findings: In 457 mother-child pairs from Europe, and 149 child/parent trios from North America, we show that ocular and brain disease in congenital toxoplasmosis associate with polymorphisms in ABCA4 encoding ATP-binding cassette transporter, subfamily A, member 4. Polymorphisms at COL2A1 encoding type II collagen associate only with ocular disease. Both loci showed unusual inheritance patterns for the disease allele when comparing outcomes in heterozygous affected children with outcomes in affected children of heterozygous mothers. Modeling suggested either an effect of mother's genotype, or parent-of-origin effects. Experimental studies showed that both ABCA4 and COL2A1 show isoform-specific epigenetic modifications consistent with imprinting.Conclusions: These associations between clinical outcomes of congenital toxoplasmosis and polymorphisms at ABCA4 and COL2A1 provide novel insight into the molecular pathways that can be affected by congenital infection with this parasite

    Genes That Influence Swarming Motility and Biofilm Formation in Variovorax paradoxus EPS

    Get PDF
    Variovorax paradoxus is an aerobic soil bacterium associated with important biodegradative processes in nature. We use V. paradoxus EPS to study multicellular behaviors on surfaces.We recovered flanking sequence from 123 clones in a Tn5 mutant library, with insertions in 29 different genes, selected based on observed surface behavior phenotypes. We identified three genes, Varpa_4665, Varpa_4680, and Varpa_5900, for further examination. These genes were cloned into pBBR1MCS2 and used to complement the insertion mutants. We also analyzed expression of Varpa_4680 and Varpa_5900 under different growth conditions by qPCR.The 29 genes we identified had diverse predicted functions, many in exopolysaccharide synthesis. Varpa_4680, the most commonly recovered insertion site, encodes a putative N-acetyl-L-fucosamine transferase similar to WbuB. Expression of this gene in trans complemented the mutant fully. Several unique insertions were identified in Varpa_5900, which is one of three predicted pilY1 homologs in the EPS genome. No insertions in the two other putative pilY1 homologs present in the genome were identified. Expression of Varpa_5900 altered the structure of the wild type swarm, as did disruption of the chromosomal gene. The swarming phenotype was complemented by expression of Varpa_5900 from a plasmid, but biofilm formation was not restored. Both Varpa_4680 and Varpa_5900 transcripts were downregulated in biofilms and upregulated during swarming when compared to log phase culture. We identified a putative two component system (Varpa_4664-4665) encoding a response regulator (shkR) and a sensor histidine kinase (shkS), respectively. Biofilm formation increased and swarming was strongly delayed in the Varpa_4665 (shkS) mutant. Complementation of shkS restored the biofilm phenotype but swarming was still delayed. Expression of shkR in trans suppressed biofilm formation in either genetic background, and partially restored swarming in the mutant.The data presented here point to complex regulation of these surface behaviors

    A mathematical model of quorum sensing regulated EPS production in biofilm communities

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Biofilms are microbial communities encased in a layer of extracellular polymeric substances (EPS). The EPS matrix provides several functional purposes for the biofilm, such as protecting bacteria from environmental stresses, and providing mechanical stability. Quorum sensing is a cell-cell communication mechanism used by several bacterial taxa to coordinate gene expression and behaviour in groups, based on population densities.</p> <p>Model</p> <p>We mathematically model quorum sensing and EPS production in a growing biofilm under various environmental conditions, to study how a developing biofilm impacts quorum sensing, and conversely, how a biofilm is affected by quorum sensing-regulated EPS production. We investigate circumstances when using quorum-sensing regulated EPS production is a beneficial strategy for biofilm cells.</p> <p>Results</p> <p>We find that biofilms that use quorum sensing to induce increased EPS production do not obtain the high cell populations of low-EPS producers, but can rapidly increase their volume to parallel high-EPS producers. Quorum sensing-induced EPS production allows a biofilm to switch behaviours, from a colonization mode (with an optimized growth rate), to a protection mode.</p> <p>Conclusions</p> <p>A biofilm will benefit from using quorum sensing-induced EPS production if bacteria cells have the objective of acquiring a thick, protective layer of EPS, or if they wish to clog their environment with biomass as a means of securing nutrient supply and outcompeting other colonies in the channel, of their own or a different species.</p

    Phenotypic and Genome-Wide Analysis of an Antibiotic-Resistant Small Colony Variant (SCV) of Pseudomonas aeruginosa

    Get PDF
    Small colony variants (SCVs) are slow-growing bacteria, which often show increased resistance to antibiotics and cause latent or recurrent infections. It is therefore important to understand the mechanisms at the basis of this phenotypic switch.One SCV (termed PAO-SCV) was isolated, showing high resistance to gentamicin and to the cephalosporine cefotaxime. PAO-SCV was prone to reversion as evidenced by emergence of large colonies with a frequency of 10(-5) on media without antibiotics while it was stably maintained in presence of gentamicin. PAO-SCV showed a delayed growth, defective motility, and strongly reduced levels of the quorum sensing Pseudomonas quinolone signal (PQS). Whole genome expression analysis further suggested a multi-layered antibiotic resistance mechanism, including simultaneous over-expression of two drug efflux pumps (MexAB-OprM, MexXY-OprM), the LPS modification operon arnBCADTEF, and the PhoP-PhoQ two-component system. Conversely, the genes for the synthesis of PQS were strongly down-regulated in PAO-SCV. Finally, genomic analysis revealed the presence of mutations in phoP and phoQ genes as well as in the mexZ gene encoding a repressor of the mexXY and mexAB-oprM genes. Only one mutation occurred only in REV, at nucleotide 1020 of the tufA gene, a paralog of tufB, both encoding the elongation factor Tu, causing a change of the rarely used aspartic acid codon GAU to the more common GAC, possibly causing an increase of tufA mRNA translation. High expression of phoP and phoQ was confirmed for the SCV variant while the revertant showed expression levels reduced to wild-type levels.By combining data coming from phenotypic, gene expression and proteome analysis, we could demonstrate that resistance to aminoglycosides in one SCV mutant is multifactorial including overexpression of efflux mechanisms, LPS modification and is accompanied by a drastic down-regulation of the Pseudomonas quinolone signal quorum sensing system
    corecore