24 research outputs found

    Formation and Disruption of W-Phase in High-Entropy Alloys

    Get PDF
    High-entropy alloys (HEAs) are single-phase systems prepared from equimolar or near-equimolar concentrations of at least five principal elements. The combination of high mixing entropy, severe lattice distortion, sluggish diffusion and cocktail effect favours the formation of simple phases—usually a bcc or fcc matrix with minor inclusions of ordered binary intermetallics. HEAs have been proposed for applications in which high temperature stability (including mechanical and chemical stability under high temperature and high mechanical impact) is required. On the other hand, the major challenge to overcome for HEAs to become commercially attractive is the achievement of lightweight alloys of extreme hardness and low brittleness. The multicomponent AlCrCuScTi alloy was prepared and characterized using powder X-ray diffraction (PXRD), scanning-electron microscope (SEM) and atomic-force microscope equipped with scanning Kelvin probe (AFM/SKP) techniques. Results show that the formation of complex multicomponent ternary intermetallic compounds upon heating plays a key role in phase evolution. The formation and degradation of W-phase, Al2Cu3Sc, in the AlCrCuScTi alloy plays a crucial role in its properties and stability. Analysis of as-melted and annealed alloy suggests that the W-phase is favoured kinetically, but thermodynamically unstable. The disruption of the W-phase in the alloy matrix has a positive effect on hardness (890 HV), density (4.83 g·cm−3) and crack propagation. The hardness/density ratio obtained for this alloy shows a record value in comparison with ordinary heavy refractory HEAs

    Structure and magnetic property of potassium intercalated pentacene: observation of superconducting phase in KxC22H14

    Get PDF
    We report the results from systematic investigations on the structure and magnetic properties of potassium intercalated pentacene as a function of potassium content, K x C22H14 (1  ≤  x  ≤  3). Synchrotron radiation powder x-ray diffraction technique revealed that there are two different stable phases can be obtained via potassium intercalation, namely, K1C22H14 phase and K3C22H14 phase. Structural phase transition was induced when the potassium content was increased to the nominal value x  =  3. This phase transition is accompanied by drastic change in their magnetic property, where those samples with compositions K1C22H14 shows ferromagnetic behavior and those with near K3C22H14 lead to observation of superconductivity with transition temperature, T c, of 4.5 K. It is first time that superconductivity was observed in linear oligoacenes. Both magnetization study and synchrotron radiation powder x-ray diffraction clearly indicates that the superconducting phase belong to K3C22H14 as a result of phase transition from triclinic to monoclinic structure induced by chemical doping

    The Effect of Scandium Ternary Intergrain Precipitates in Al-Containing High-Entropy Alloys

    Get PDF
    We investigate the effect of alloying with scandium on microstructure, high-temperature phase stability, electron transport, and mechanical properties of the Al2CoCrFeNi, Al0.5CoCrCuFeNi, and AlCoCrCu0.5FeNi high-entropy alloys. Out of the three model alloys, Al2CoCrFeNi adopts a disordered CsCl structure type. Both of the six-component alloys contain a mixture of body-centered cubic (bcc) and face centered cubic (fcc) phases. The comparison between in situ high-temperature powder diffraction data and ex situ data from heat-treated samples highlights the presence of a reversible bcc to fcc transition. The precipitation of a MgZn2-type intermetallic phase along grain boundaries following scandium addition affects all systems differently, but especially enhances the properties of Al2CoCrFeNi. It causes grain refinement; hardness and electrical conductivity increases (up to 20% and 14% respectively) and affects the CsCl-type → fcc equilibrium by moving the transformation to sensibly higher temperatures. The maximum dimensionless thermoelectric figure of merit (ZT) of 0.014 is reached for Al2CoCrFeNi alloyed with 0.3 wt.% Sc at 650 °C

    The Earlier the Better: Structural Analysis and Separation of Lanthanides with Pyrroloquinoline Quinone

    Get PDF
    Lanthanides (Ln) are critical raw materials, however, their mining and purification have a considerable negative environmental impact and sustainable recycling and separation strategies for these elements are needed. In this study, the precipitation and solubility behavior of Ln complexes with pyrroloquinoline quinone (PQQ), the cofactor of recently discovered lanthanide (Ln) dependent methanol dehydrogenase (MDH) enzymes, is presented. In this context, the molecular structure of a biorelevant europium PQQ complex was for the first time elucidated outside a protein environment. The complex crystallizes as an inversion symmetric dimer, Eu2PQQ2, with binding of Eu in the biologically relevant pocket of PQQ. LnPQQ and Ln1Ln2PQQ complexes were characterized by using inductively coupled plasma mass spectrometry (ICP‐MS), infrared (IR) spectroscopy, 151Eu‐Mössbauer spectroscopy, X‐ray total scattering, and extended X‐ray absorption fine structure (EXAFS). It is shown that a natural enzymatic cofactor is capable to achieve separation by precipitation of the notoriously similar, and thus difficult to separate, lanthanides to some extent

    Phase Diagram of the Rhenium-Rhodium System: State of the Art

    No full text

    Synthesis and Crystal Chemistry of Octahedral Rhodium(III) Chloroamines

    No full text
    Rhodium(III) octahedral complexes with amine and chloride ligands are the most common starting compounds for preparing catalytically active rhodium(I) and rhodium(III) species. Despite intensive study during the last 100 years, synthesis and crystal structures of rhodium(III) complexes were described only briefly. Some [RhClx(NH3)6-x] compounds are still unknown. In this study, available information about synthetic protocols and the crystal structures of possible [RhClx(NH3)6−x] octahedral species are summarized and critically analyzed. Unknown crystal structures of (NH4)2[Rh(NH3)Cl5], trans–[Rh(NH3)4Cl2]Cl⋅H2O, and cis–[Rh(NH3)4Cl2]Cl are reported based on high quality single crystal X-ray diffraction data. The crystal structure of [Rh(NH3)5Cl]Cl2 was redetermined. All available crystal structures with octahedral complexes [RhClx(NH3)6-x] were analyzed in terms of their packings and pseudo-translational sublattices. Pseudo-translation lattices suggest face-centered cubic and hexagonal closed-packed sub-cells, where Rh atoms occupy nearly ideal lattices

    Solid-State Transformations in Inner Coordination Sphere of [Co(NH3)6][Fe(C2O4)3]∙3H2O as a Route to Access Catalytically Active Co-Fe Materials

    No full text
    Thermal decomposition of [Co(NH3)6][Fe(C2O4)3]∙3H2O in argon atmosphere, at a low heating rate (3°/min), and in large amounts of the initial complex (~0.1 mole), has been studied. It was possible to distinguish four decomposition steps upon heating: In the temperature range of 50–100 °C—the loss of crystal water; 100–190 °C—stability region of dehydrated complex; 230–270 °C—the range of stability of intermediate phase with the formula CoFe(NH3)2(C2O4)2; 270–350 °C—thermal decomposition of the intermediate with the formation of metallic products and further air oxidation with the formation of Co1.5Fe1.5O4. Catalytic properties of thermolysis products were tested in the decomposition reaction of H2O2 (inactive), oxidation of acetone (average activity), and decomposition of ammonium perchlorate (highly active)

    [NiEn<sub>3</sub>](MoO<sub>4</sub>)<sub>0.5</sub>(WO<sub>4</sub>)<sub>0.5</sub> Co-Crystals as Single-Source Precursors for Ternary Refractory Ni–Mo–W Alloys

    No full text
    The co-crystallisation of [NiEn3](NO3)2 (En = ethylenediamine) with Na2MoO4 and Na2WO4 from a water solution results in the formation of [NiEn3](MoO4)0.5(WO4)0.5 co-crystals. According to the X-ray diffraction analysis of eight single crystals, the parameters of the hexagonal unit cell (space group P–31c, Z = 2) vary in the following intervals: a = 9.2332(3)–9.2566(6); c = 9.9512(12)–9.9753(7) Å with the Mo/W ratio changing from 0.513(3)/0.487(3) to 0.078(4)/0.895(9). The thermal decomposition of [NiEn3](MoO4)0.5(WO4)0.5 individual crystals obtained by co-crystallisation was performed in He and H2 atmospheres. The ex situ X-ray study of thermal decomposition products shows the formation of nanocrystalline refractory alloys and carbide composites containing ternary Ni–Mo–W phases. The formation of carbon–nitride phases at certain stages of heating up to 1000 °C were shown

    An Alternative Route to Pentavalent Postperovskite

    No full text
    Two different high-pressure and -temperature synthetic routes have been used to produce only the second-known pentavalent CaIrO<sub>3</sub>-type oxide. Postperovskite NaOsO<sub>3</sub> has been prepared from GdFeO<sub>3</sub>-type perovskite NaOsO<sub>3</sub> at 16 GPa and 1135 K. Furthermore, it has also been synthesized at the considerably lower pressure of 6 GPa and 1100 K from a precursor of hexavalent Na<sub>2</sub>OsO<sub>4</sub> and nominally pentavalent KSbO<sub>3</sub>-like phases. The latter synthetic pathway offers a new lower-pressure route to the postperovskite form, one that completely foregoes any perovskite precursor or intermediate. This work suggests that postperovskite can be obtained in other compounds and chemistries where generalized rules based on the perovskite structure may not apply or where no perovskite is known. One more obvious consequence of our second route is that perovskite formation may even mask and hinder other less extreme chemical pathways to postperovskite phases

    Face-Centered Cubic Refractory Alloys Prepared from Single-Source Precursors

    No full text
    Three binary fcc-structured alloys (fcc&ndash;Ir0.50Pt0.50, fcc&ndash;Rh0.66Pt0.33 and fcc&ndash;Rh0.50Pd0.50) were prepared from [Ir(NH3)5Cl][PtCl6], [Ir(NH3)5Cl][PtBr6], [Rh(NH3)5Cl]2[PtCl6]Cl2 and [Rh(NH3)5Cl][PdCl4]&middot;H2O, respectively, as single-source precursors. All alloys were prepared by thermal decomposition in gaseous hydrogen flow below 800 &deg;C. Fcc&ndash;Ir0.50Pt0.50 and fcc&ndash;Rh0.50Pd0.50 correspond to miscibility gaps on binary metallic phase diagrams and can be considered as metastable alloys. Detailed comparison of [Ir(NH3)5Cl][PtCl6] and [Ir(NH3)5Cl][PtBr6] crystal structures suggests that two isoformular salts are not isostructural. In [Ir(NH3)5Cl][PtBr6], specific Br&hellip;Br interactions are responsible for a crystal structure arrangement. Room temperature compressibility of fcc&ndash;Ir0.50Pt0.50, fcc&ndash;Rh0.66Pt0.33 and fcc&ndash;Rh0.50Pd0.50 has been investigated up to 50 GPa in diamond anvil cells. All investigated fcc-structured binary alloys are stable under compression. Atomic volumes and bulk moduli show good agreement with ideal solutions model. For fcc&ndash;Ir0.50Pt0.50, V0/Z = 14.597(6) &Aring;3&middot;atom&minus;1, B0 = 321(6) GPa and B0&rsquo; = 6(1); for fcc&ndash;Rh0.66Pt0.33, V0/Z = 14.211(3) &Aring;3&middot;atom&minus;1, B0 =259(1) GPa and B0&rsquo; = 6.66(9) and for fcc&ndash;Rh0.50Pd0.50, V0/Z = 14.18(2) &Aring;3&middot;atom&minus;1, B0 =223(4) GPa and B0&rsquo; = 5.0(3)
    corecore