7 research outputs found

    Self-Organization in Dilute Aqueous Solutions of Thermoresponsive Star-Shaped Six-Arm Poly-2-Alkyl-2-Oxazines and Poly-2-Alkyl-2-Oxazolines

    Get PDF
    The behavior of star-shaped six-arm poly-2-alkyl-2-oxazines and poly-2-alkyl-2-oxazolines in aqueous solutions on heating was studied by light scattering, turbidimetry and microcalorimetry. The core of stars was hexaaza [26] orthoparacyclophane and the arms were poly-2-ethyl-2-oxazine, poly-2-isopropyl-2-oxazine, poly-2-ethyl-2-oxazoline, and poly-2-isopropyl-2-oxazoline. The arm structure affects the properties of polymers already at low temperatures. Molecules and aggregates were present in solutions of poly-2-alkyl-2-oxazines, while aggregates of two types were observed in the case of poly-2-alkyl-2-oxazolines. On heating below the phase separation temperature, the characteristics of the investigated solutions did not depend practically on temperature. An increase in the dehydration degree of poly-2-alkyl-2-oxazines and poly-2-alkyl-2-oxazolines led to the formation of intermolecular hydrogen bonds, and aggregation was the dominant process near the phase separation temperature. It was shown that the characteristics of the phase transition in solutions of the studied polymer stars are determined primarily by the arm structure, while the influence of the molar mass is not so significant. In comparison with literature data, the role of the hydrophobic core structure in the formation of the properties of star-shaped polymers was analyzed

    Self-Organization in Dilute Aqueous Solutions of Thermoresponsive Star-Shaped Six-Arm Poly-2-Alkyl-2-Oxazines and Poly-2-Alkyl-2-Oxazolines

    Get PDF
    The behavior of star-shaped six-arm poly-2-alkyl-2-oxazines and poly-2-alkyl-2-oxazolines in aqueous solutions on heating was studied by light scattering, turbidimetry and microcalorimetry. The core of stars was hexaaza [26] orthoparacyclophane and the arms were poly-2-ethyl-2-oxazine, poly-2-isopropyl-2-oxazine, poly-2-ethyl-2-oxazoline, and poly-2-isopropyl-2-oxazoline. The arm structure affects the properties of polymers already at low temperatures. Molecules and aggregates were present in solutions of poly-2-alkyl-2-oxazines, while aggregates of two types were observed in the case of poly-2-alkyl-2-oxazolines. On heating below the phase separation temperature, the characteristics of the investigated solutions did not depend practically on temperature. An increase in the dehydration degree of poly-2-alkyl-2-oxazines and poly-2-alkyl-2-oxazolines led to the formation of intermolecular hydrogen bonds, and aggregation was the dominant process near the phase separation temperature. It was shown that the characteristics of the phase transition in solutions of the studied polymer stars are determined primarily by the arm structure, while the influence of the molar mass is not so significant. In comparison with literature data, the role of the hydrophobic core structure in the formation of the properties of star-shaped polymers was analyzed

    Self-Organization in Dilute Aqueous Solutions of Thermoresponsive Star-Shaped Six-Arm Poly-2-Alkyl-2-Oxazines and Poly-2-Alkyl-2-Oxazolines

    No full text
    The behavior of star-shaped six-arm poly-2-alkyl-2-oxazines and poly-2-alkyl-2-oxazolines in aqueous solutions on heating was studied by light scattering, turbidimetry and microcalorimetry. The core of stars was hexaaza [26] orthoparacyclophane and the arms were poly-2-ethyl-2-oxazine, poly-2-isopropyl-2-oxazine, poly-2-ethyl-2-oxazoline, and poly-2-isopropyl-2-oxazoline. The arm structure affects the properties of polymers already at low temperatures. Molecules and aggregates were present in solutions of poly-2-alkyl-2-oxazines, while aggregates of two types were observed in the case of poly-2-alkyl-2-oxazolines. On heating below the phase separation temperature, the characteristics of the investigated solutions did not depend practically on temperature. An increase in the dehydration degree of poly-2-alkyl-2-oxazines and poly-2-alkyl-2-oxazolines led to the formation of intermolecular hydrogen bonds, and aggregation was the dominant process near the phase separation temperature. It was shown that the characteristics of the phase transition in solutions of the studied polymer stars are determined primarily by the arm structure, while the influence of the molar mass is not so significant. In comparison with literature data, the role of the hydrophobic core structure in the formation of the properties of star-shaped polymers was analyzed

    Influence of Salt on the Self-Organization in Solutions of Star-Shaped Poly-2-alkyl-2-oxazoline and Poly-2-alkyl-2-oxazine on Heating

    No full text
    The water–salt solutions of star-shaped six-arm poly-2-alkyl-2-oxazines and poly-2-alkyl-2-oxazolines were studied by light scattering and turbidimetry. The core was hexaaza[26]orthoparacyclophane and the arms were poly-2-ethyl-2-oxazine, poly-2-isopropyl-2-oxazine, poly-2-ethyl-2-oxazoline, and poly-2-isopropyl-2-oxazoline. NaCl and N-methylpyridinium p-toluenesulfonate were used as salts. Their concentration varied from 0–0.154 M. On heating, a phase transition was observed in all studied solutions. It was found that the effect of salt on the thermosensitivity of the investigated stars depends on the structure of the salt and polymer and on the salt content in the solution. The phase separation temperature decreased with an increase in the hydrophobicity of the polymers, which is caused by both a growth of the side radical size and an elongation of the monomer unit. For NaCl solutions, the phase separation temperature monotonically decreased with growth of salt concentration. In solutions with methylpyridinium p-toluenesulfonate, the dependence of the phase separation temperature on the salt concentration was non-monotonic with minimum at salt concentration corresponding to one salt molecule per one arm of a polymer star. Poly-2-alkyl-2-oxazine and poly-2-alkyl-2-oxazoline stars with a hexaaza[26]orthoparacyclophane core are more sensitive to the presence of salt in solution than the similar stars with a calix[n]arene branching center

    Features of Solution Behavior of Polymer Stars with Arms of Poly-2-alkyl-2-oxazolines Copolymers Grafted to the Upper Rim of Calix[8]arene

    No full text
    Star-shaped polymers with arms of block and gradient copolymers of 2-ethyl- and 2-isopropyl-2-oxazolines grafted to the upper rim of calix[8]arene were synthesized by the “grafting from” method. The ratio of 2-ethyl- and 2-isopropyl-2-oxazoline units was 1:1. Molar masses and hydrodynamic characteristics were measured using molecular hydrodynamics and optics methods in 2-nitropropane. The arms of the synthesized stars were short and the star-shaped macromolecules were characterized by compact dimensions and heightened intramolecular density. The influence of the arm structure on the conformation of star molecules was not observed. At low temperatures, the aqueous solutions of the studied stars were not molecular dispersed but individual molecules prevailed. One phase transition was detected for all solutions. The phase separation temperatures decreased with a growth of the content of more hydrophobic 2-isopropyl-2-oxazoline units. It was shown that the way of arms grafting to the calix[8]arene core affects the behavior of aqueous solutions of star-shaped poly-2-alkyl-2-oxazoline copolymers. In the case of upper rim functionalization, the shape of calix[8]arene resembles a plate. Accordingly, the core is less shielded from the solvent and the phase separation temperatures are lower than those for star-shaped poly-2-alkyl-2-oxazolines with lower rim functionalization of the calix[8]arene
    corecore